There's nothing wrong with your logic Melody; there are 3 possible solutions:
$${{\mathtt{a}}}^{{\mathtt{3}}} = {\left(-{\mathtt{3}}\right)}^{\left(-{\mathtt{4}}\right)} \Rightarrow \left\{ \begin{array}{l}{\mathtt{a}} = {\frac{\left({\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{\left({\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{3}}}^{\left({\frac{{\mathtt{4}}}{{\mathtt{3}}}}\right)}\right)}}\\
{\mathtt{a}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{\left({\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{3}}}^{\left({\frac{{\mathtt{4}}}{{\mathtt{3}}}}\right)}\right)}}\\
{\mathtt{a}} = {\frac{{\mathtt{1}}}{{{\mathtt{3}}}^{\left({\frac{{\mathtt{4}}}{{\mathtt{3}}}}\right)}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{a}} = {\mathtt{\,-\,}}{\mathtt{0.115\: \!560\: \!212\: \!391\: \!772\: \!5}}{\mathtt{\,\small\textbf+\,}}{\mathtt{0.200\: \!156\: \!159\: \!196\: \!130\: \!2}}{i}\\
{\mathtt{a}} = {\mathtt{\,-\,}}\left({\mathtt{0.115\: \!560\: \!212\: \!391\: \!772\: \!5}}{\mathtt{\,\small\textbf+\,}}{\mathtt{0.200\: \!156\: \!159\: \!196\: \!130\: \!2}}{i}\right)\\
{\mathtt{a}} = {\mathtt{0.231\: \!120\: \!424\: \!783\: \!544\: \!9}}\\
\end{array} \right\}$$
.