After the substitution step I have used integration by parts 3 seperate times - How about that!
INTEGRATIONBYPARTS∫uv′dx=uv−∫vu′dx
∫xe√xdx=∫2√xxe√x2√xdx[ddxx1/2=12x−1/2=12√x]=2∫(√x)3e√x2√xdxlett=√xdt=12x−1/2dx=12√xdx=2∫t3etdt=2[t3et−∫3t2etdt]u=t3v′=etu′=3t2v=et=2t3et−6∫t2etdt=2t3et−6[t2et−∫2tetdt]u=t2v′=etu′=2tv=et
\begin{array}{rllll} \int x e^{\sqrt{x}}dx &=&2t^3e^t-6t^2e^t+12\int te^tdt\right]\\\\ &=&2t^3e^t-6t^2e^t+12\left[te^t-\int e^t dt\right] \qquad\qquad &u=t\quad v'=e^t\\ && \qquad\qquad &u'=1\quad v=e^t\\ &=&2t^3e^t-6t^2e^t+12te^t-12e^t+k\\\\ &=&2e^t\left[t^3-3t^2+6t-6\right]+k\\\\ &=&2e^{\sqrt{x}}\left[(\sqrt{x})^3-3(\sqrt{x})^2+6(\sqrt{x})-6\right]+k\\\\ &=&2e^{\sqrt{x}}\left[x^{3/2}-3x+6(\sqrt{x})-6\right]+k\\\\ \end{array}
After the substitution step I have used integration by parts 3 seperate times - How about that!
INTEGRATIONBYPARTS∫uv′dx=uv−∫vu′dx
∫xe√xdx=∫2√xxe√x2√xdx[ddxx1/2=12x−1/2=12√x]=2∫(√x)3e√x2√xdxlett=√xdt=12x−1/2dx=12√xdx=2∫t3etdt=2[t3et−∫3t2etdt]u=t3v′=etu′=3t2v=et=2t3et−6∫t2etdt=2t3et−6[t2et−∫2tetdt]u=t2v′=etu′=2tv=et
\begin{array}{rllll} \int x e^{\sqrt{x}}dx &=&2t^3e^t-6t^2e^t+12\int te^tdt\right]\\\\ &=&2t^3e^t-6t^2e^t+12\left[te^t-\int e^t dt\right] \qquad\qquad &u=t\quad v'=e^t\\ && \qquad\qquad &u'=1\quad v=e^t\\ &=&2t^3e^t-6t^2e^t+12te^t-12e^t+k\\\\ &=&2e^t\left[t^3-3t^2+6t-6\right]+k\\\\ &=&2e^{\sqrt{x}}\left[(\sqrt{x})^3-3(\sqrt{x})^2+6(\sqrt{x})-6\right]+k\\\\ &=&2e^{\sqrt{x}}\left[x^{3/2}-3x+6(\sqrt{x})-6\right]+k\\\\ \end{array}