Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
2
2029
5
avatar

integral of xe^square root of x dx

 Nov 29, 2014

Best Answer 

 #1
avatar+118703 
+13

 

After the substitution step I have used integration by parts 3 seperate times - How about that!

 

INTEGRATIONBYPARTSuvdx=uvvudx

 

xexdx=2xxex2xdx[ddxx1/2=12x1/2=12x]=2(x)3ex2xdxlett=xdt=12x1/2dx=12xdx=2t3etdt=2[t3et3t2etdt]u=t3v=etu=3t2v=et=2t3et6t2etdt=2t3et6[t2et2tetdt]u=t2v=etu=2tv=et

 

\begin{array}{rllll}  \int x e^{\sqrt{x}}dx &=&2t^3e^t-6t^2e^t+12\int te^tdt\right]\\\\  &=&2t^3e^t-6t^2e^t+12\left[te^t-\int e^t dt\right] \qquad\qquad &u=t\quad v'=e^t\\  && \qquad\qquad &u'=1\quad v=e^t\\  &=&2t^3e^t-6t^2e^t+12te^t-12e^t+k\\\\  &=&2e^t\left[t^3-3t^2+6t-6\right]+k\\\\  &=&2e^{\sqrt{x}}\left[(\sqrt{x})^3-3(\sqrt{x})^2+6(\sqrt{x})-6\right]+k\\\\  &=&2e^{\sqrt{x}}\left[x^{3/2}-3x+6(\sqrt{x})-6\right]+k\\\\  \end{array}

 Nov 29, 2014
 #1
avatar+118703 
+13
Best Answer

 

After the substitution step I have used integration by parts 3 seperate times - How about that!

 

INTEGRATIONBYPARTSuvdx=uvvudx

 

xexdx=2xxex2xdx[ddxx1/2=12x1/2=12x]=2(x)3ex2xdxlett=xdt=12x1/2dx=12xdx=2t3etdt=2[t3et3t2etdt]u=t3v=etu=3t2v=et=2t3et6t2etdt=2t3et6[t2et2tetdt]u=t2v=etu=2tv=et

 

\begin{array}{rllll}  \int x e^{\sqrt{x}}dx &=&2t^3e^t-6t^2e^t+12\int te^tdt\right]\\\\  &=&2t^3e^t-6t^2e^t+12\left[te^t-\int e^t dt\right] \qquad\qquad &u=t\quad v'=e^t\\  && \qquad\qquad &u'=1\quad v=e^t\\  &=&2t^3e^t-6t^2e^t+12te^t-12e^t+k\\\\  &=&2e^t\left[t^3-3t^2+6t-6\right]+k\\\\  &=&2e^{\sqrt{x}}\left[(\sqrt{x})^3-3(\sqrt{x})^2+6(\sqrt{x})-6\right]+k\\\\  &=&2e^{\sqrt{x}}\left[x^{3/2}-3x+6(\sqrt{x})-6\right]+k\\\\  \end{array}

Melody Nov 29, 2014
 #2
avatar+130477 
+5

Very clever, Melody........that initial "trick" of mutiplying the top and bottom by  2√x  was the key, wasn't it....???....I could have looked for hours and never discovered that......

(Maybe I should have bought some Coronas, too!!)

 

 Nov 29, 2014
 #3
avatar+118703 
+5

Yes maybe you should have    

 Nov 29, 2014
 #4
avatar+130477 
0

Smart aleck.......

 

 Nov 29, 2014
 #5
avatar+33658 
+10

Here's an alternative method:

integration

.

 Nov 29, 2014

5 Online Users

avatar