Using distance formula,
\(\sqrt{(x-4)^2 + 196} = 10\sqrt{3}\)
Square both sides and subtract 196 on both sides,
\((x-4)^2 + 196 = 300\)
\((x-4)^2 = 104\)
Expand left side and subtract 104 on both sides,
\(x^2 - 8x +16 = 104\)
\(x^2 - 8x -88 = 0\)
Apply quadratic formula to get x values of,
\(x=4±2\sqrt{26}\)
Add both possible values of x together,
\((4+2\sqrt{26}) + (4-2\sqrt{26}) = 8\)
So the final answer is 8.