Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
528
1
avatar+240 

can someone help me with this question? i'm not really sure how to approach it

 

The complex numbers z and w satisfy|z|=|w|=1 and zw1.

 

(a) Prove that ¯z=1z and ¯w=1w 

(b) Prove that z+wzw+1 is a real number.

 

thank you!

 Mar 1, 2021
 #1
avatar
+1

(a) Let w = a + bi and z = c + di.  The rest is expanding.

 

(b) Let w = a + bi and z = c + di.  Then

w+z1+wz=a+c+bi+di1+(a+bi)(c+di)

To express this in rectangular form, we can multiply the numerator and denominator by the conjugate:

a+c+bi+di1+(a+bi)(c+di)=(a+c+bi+di)((1(a+bi)(c+di))(1+(a+bi)(c+di))(1(a+bi)(c+di))

The denominator simplifies to (1 - (a^2 + b^2)(c^2 + d^2)), which is real.  The numerator simplifies to a^2 - b^2 + c^2 - d^2, which is also real.  Therefore, the complex number (z + w)/(zw + 1) is real.

 Mar 1, 2021

1 Online Users

avatar