Let W = 2L - 3 ..... so we have
(2L - 3)(L) = 317 simplify
2L2 - 3L = 317 subtract 317 from both sides
2L2 - 3L - 317 = 0 using the onsite calculator and subbing x for L, we have
$${\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{317}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{2\,545}}}}{\mathtt{\,-\,}}{\mathtt{3}}\right)}{{\mathtt{4}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{2\,545}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right)}{{\mathtt{4}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{11.861\: \!998\: \!255\: \!629\: \!438\: \!5}}\\
{\mathtt{x}} = {\mathtt{13.361\: \!998\: \!255\: \!629\: \!438\: \!5}}\\
\end{array} \right\}$$
So...L = 13.4 ft
And W = 2(13.4) - 3 = 23.8 ft
