Processing math: 100%
 

Davis

avatar
UsernameDavis
Score501
Membership
Stats
Questions 58
Answers 139

+1
780
0
avatar+501 
Davis  Jul 29, 2019
 #2
avatar+501 
+3
Jul 17, 2019
 #15
avatar+501 
+4

I re-wrote the proof by myself to make sure I got it:

Prove of 2sin2+4sin4++178sin178+180sin18090=cot1:

L.H.S.= 2sin2+4sin4++178sin178+180sin18090=cot1
 
We can use the identity sinx=sin(180x) to get:

L.H.S.= 2sin2+178sin178+180sin180+4sin4+90=cot1

We can simplify to get:

L.H.S.= 2(sin2+sin4++sin88)+sin90

We can multiply by sin1sin1 to get:

L.H.S.= 2(sin2sin1+sin4sin1++sin88sin1)+sin90sin1sin1

Then, we can use the sum-to-product (or Prosthaphaeresis :)) identities to get:

L.H.S.= cos1cos3+cos3cos5++cos87cos89+sin90sin1sin1

We can cancel the terms to get:

L.H.S.= cos1cos89+cos89cos912sin1

We can simplify to get:

L.H.S.= cos1cos89+cos912sin1

We can use the identity cosx=cos(180x) to get:

L.H.S.= cos1cos89cos892sin1

L.H.S.= cos1sin1=cot1 R.H.S.= cot1

L.H.S.=R.H.S.

If 2sin2+4sin4++178sin178+180sin18090=cot1, that means the average of nsinn(n=2,4,6,,180) is cot1.

Therefore, the average of nsinn(n=2,4,6,,180)is cot1.

Jul 17, 2019
 #14
avatar+501 
+2
Jul 17, 2019