I re-wrote the proof by myself to make sure I got it:
Prove of 2⋅sin2∘+4⋅sin4∘+⋯+178⋅sin178∘+180⋅sin180∘90=cot1∘:
L.H.S.= 2⋅sin2∘+4⋅sin4∘+⋯+178⋅sin178∘+180⋅sin180∘90=cot1∘
We can use the identity sinx=sin(180∘−x) to get:
L.H.S.= 2⋅sin2∘+178⋅sin178∘+180⋅sin180∘+4⋅sin4∘+⋯90=cot1∘
We can simplify to get:
L.H.S.= 2⋅(sin2∘+sin4∘+⋯+sin88∘)+sin90∘
We can multiply by sin1∘sin1∘ to get:
L.H.S.= 2⋅(sin2∘⋅sin1∘+sin4∘⋅sin1∘+⋯+sin88∘⋅sin1∘)+sin90∘⋅sin1∘sin1∘
Then, we can use the sum-to-product (or Prosthaphaeresis :)) identities to get:
L.H.S.= cos1∘−cos3∘+cos3∘−cos5∘+⋯+cos87∘−cos89∘+sin90∘⋅sin1∘sin1∘
We can cancel the terms to get:
L.H.S.= cos1∘−cos89∘+cos89∘−cos91∘2sin1∘
We can simplify to get:
L.H.S.= cos1∘−cos89∘+cos91∘2sin1∘
We can use the identity cosx=cos(180−x) to get:
L.H.S.= cos1∘−cos89∘−cos89∘2sin1∘
L.H.S.= cos1∘sin1∘=cot1∘ R.H.S.= cot1∘
L.H.S.=R.H.S.
If 2⋅sin2∘+4⋅sin4∘+⋯+178⋅sin178∘+180⋅sin180∘90=cot1∘, that means the average of nsinn∘(n=2,4,6,…,180) is cot1∘.
Therefore, the average of nsinn∘(n=2,4,6,…,180)is cot1∘.