Can someone please help me?
In △ABC, AB=BC, and BC is an altitude. BE=10, and The values of tan∠CBE, tan∠DBE, and \tan \angle ABE form a geometric progression and the values of cot∠DBE, cot∠CBE, and \cot \angle DBC form an arithmetic progression. What is the area of \triangle ABC?
In △ABC , AB=BC, and ¯BD is an altitude.
Point E is on the extension of ¯AC$ such that BE=10.
The values of tan∠CBE, tan∠DBE, and tan∠ABE form a geometric progression,
and the values of cot∠DBE, cot∠CBE, cot∠DBC form an arithmetic progression.
What is the area of △ABC?
Let ∠DBC=∠ABD=α
1. GP:
tan(∠CBE)=atan(∠DBE)=artan(∠ABE)=ar2a⋅ar2=(ar)2tan(∠CBE)⋅tan(∠ABE)=tan2(∠DBE)|∠CBE=∠DBE−α, ∠ABE=∠DBE+αtan(∠DBE−α)⋅tan(∠DBE+α)=tan2(∠DBE)Formulatan(x+y)=tan(x)+tan(y)1−tan(x)tan(y)tan(x−y)=tan(x)−tan(y)1+tan(x)tan(y)tan(x−y)tan(x+y)=(tan(x)−tan(y)1+tan(x)tan(y))(tan(x)+tan(y)1−tan(x)tan(y))=tan2(x)−tan2(y)1−tan2(x)tan2(y)tan2(∠DBE)−tan2(α)1−tan2(∠DBE)tan2(α)=tan2(∠DBE)tan2(∠DBE)−tan2(α)=(1−tan2(∠DBE)tan2(α))tan2(∠DBE)−tan2(α)=−tan4(∠DBE)tan2(α)tan4(∠DBE)tan2(α)−tan2(α)=0tan2(α)⏟≠0(tan4(∠DBE)−1)⏟=0=0tan4(∠DBE)−1=0tan4(∠DBE)=1tan(∠DBE)=1∠DBE=arctan(1)∠DBE=45∘
2. AP:
cot(∠DBE)=b|∠DBE=45∘cot(45∘)=b1=bcot(∠CBE)=cot(∠DBE−α)=cot(45∘−α)=b+d=1+bcot(∠DBC)=cot(α)=b+2d=1+2dcot(∠DBE)=1cot(45∘−α)=1+dcot(α)=1+2d2(1+d)=1+(1+2d)2cot(∠45∘−α)=1+cot(α)Formulacot(x−y)=cot(x)cot(y)+1cot(y)−cot(x)cot(45∘−α)=cot(45∘)cot(α)+1cot(α)−cot(45∘)=cot(45∘−α)=1∗cot(α)+1cot(α)−1=cot(45∘−α)=cot(α)+1cot(α)−12(cot(α)+1cot(α)−1)=1+cot(α)(1+cot(α))(cot(α)−1)=2(cot(α)+1)(1+cot(α))((cot(α)−1)−2(cot(α)+1)=0(1+cot(α)⏟≠−1)(cot(α)−3⏟=0)=0cot(α)−3=0cot(α)=3
BD= ?
cos(∠DBE)=BDBEcos(45∘)=BD10BD=10cos(45∘)BD=10√22BD=5√2
AC= ?
cot(α)=BDDC×22cot(α)=2BD2DC|2DC=ACcot(α)=2BDACAC=2BDcot(α)|cot(α)=3AC=2BD3|BD=5√2AC=2∗5√23AC=10√23
area of △ABC
area of △ABC =AC⋅DB2area of △ABC =10√23⋅5√22area of △ABC =503
source: https://artofproblemsolving.com/wiki/index.php/2004_AMC_12B_Problems/Problem_24