Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+2
1043
2
avatar+501 

Can someone please help me?

 

In ABCAB=BC, and BC is an altitude. BE=10, and The values of tanCBEtanDBE, and \tan \angle ABE form a geometric progression and the values of cotDBEcotCBE, and \cot \angle DBC form an arithmetic progression. What is the area of \triangle ABC?

 Jul 31, 2019
 #1
avatar+26396 
+3

In  ABC , AB=BC, and ¯BD is an altitude.
Point E is on the extension of ¯AC$ such that BE=10.
The values of tanCBE, tanDBE, and tanABE form a geometric progression,
and the values of cotDBE, cotCBE, cotDBC form an arithmetic progression.
What is the area of ABC?

 

Let DBC=ABD=α

 

1. GP:

tan(CBE)=atan(DBE)=artan(ABE)=ar2aar2=(ar)2tan(CBE)tan(ABE)=tan2(DBE)|CBE=DBEα, ABE=DBE+αtan(DBEα)tan(DBE+α)=tan2(DBE)Formulatan(x+y)=tan(x)+tan(y)1tan(x)tan(y)tan(xy)=tan(x)tan(y)1+tan(x)tan(y)tan(xy)tan(x+y)=(tan(x)tan(y)1+tan(x)tan(y))(tan(x)+tan(y)1tan(x)tan(y))=tan2(x)tan2(y)1tan2(x)tan2(y)tan2(DBE)tan2(α)1tan2(DBE)tan2(α)=tan2(DBE)tan2(DBE)tan2(α)=(1tan2(DBE)tan2(α))tan2(DBE)tan2(α)=tan4(DBE)tan2(α)tan4(DBE)tan2(α)tan2(α)=0tan2(α)0(tan4(DBE)1)=0=0tan4(DBE)1=0tan4(DBE)=1tan(DBE)=1DBE=arctan(1)DBE=45

 

2. AP:

cot(DBE)=b|DBE=45cot(45)=b1=bcot(CBE)=cot(DBEα)=cot(45α)=b+d=1+bcot(DBC)=cot(α)=b+2d=1+2dcot(DBE)=1cot(45α)=1+dcot(α)=1+2d2(1+d)=1+(1+2d)2cot(45α)=1+cot(α)Formulacot(xy)=cot(x)cot(y)+1cot(y)cot(x)cot(45α)=cot(45)cot(α)+1cot(α)cot(45)=cot(45α)=1cot(α)+1cot(α)1=cot(45α)=cot(α)+1cot(α)12(cot(α)+1cot(α)1)=1+cot(α)(1+cot(α))(cot(α)1)=2(cot(α)+1)(1+cot(α))((cot(α)1)2(cot(α)+1)=0(1+cot(α)1)(cot(α)3=0)=0cot(α)3=0cot(α)=3

 

BD= ?

cos(DBE)=BDBEcos(45)=BD10BD=10cos(45)BD=1022BD=52

 

AC= ?

cot(α)=BDDC×22cot(α)=2BD2DC|2DC=ACcot(α)=2BDACAC=2BDcot(α)|cot(α)=3AC=2BD3|BD=52AC=2523AC=1023

 

area of ABC 

area of ABC =ACDB2area of ABC =1023522area of ABC =503

 

source: https://artofproblemsolving.com/wiki/index.php/2004_AMC_12B_Problems/Problem_24

 

laugh

 Jul 31, 2019
 #2
avatar+130466 
0

Nicely done, heureka!!!!!!

 

 

 

cool cool cool

CPhill  Aug 2, 2019

5 Online Users

avatar
avatar