Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
955
15
avatar+501 

2sin2+4sin4++178sin178+180sin180=90cot1
2sin2+4sin4++178sin178+180sin180=90cos1sin1
We can use the identity sinx=sin(180x) and simplify to get:
2(sin2+sin4++sin88+sin90)=cos1sin1
We can multiply by sin1 to get:
2(sin2sin1+sin4sin1++sin88sin1+sin90sin1)=cos1
Then, we can use the sum-to-product (or Prosthaphaeresis :)) identities to get:
cos1cos3+cos3cos5++cos87cos89+cos89cos91=cos1
We can cancel the terms to get:
cos1cos91=cos1

 

 

 

My other proof that also has some error in it:

2sin2+4sin4++178sin178+180sin180=90cot1
2sin2+4sin4++178sin178+180sin180=90cos1sin1
We can use the identity sinx=sin(180x) and simplify to get:
2(sin2+sin4++sin88)+2=cos1sin1
We can multiply by sin1 to get:
2(sin2sin1+sin4sin1++sin88sin1)+2sin1=cos1
Then, we can use the sum-to-product (or Prosthaphaeresis :)) identities to get:
cos1cos3+cos3cos5++cos87cos89+2sin1=cos1
We can cancel the terms to get:
cos1cos89+2sin1=cos1
We can use the identity sinx=cos(x90) to get
cos1+sin1=cos1

 Jul 16, 2019
edited by Davis  Jul 16, 2019
edited by Davis  Jul 16, 2019
edited by Davis  Jul 16, 2019
edited by Davis  Jul 16, 2019
edited by Davis  Jul 16, 2019
edited by Davis  Jul 16, 2019
 #1
avatar+118703 
+1

What are you actually trying to do?

 

I have not checked the last three lines but the rest of the logic looks ok.

BUT what is the question?

 Jul 16, 2019
 #2
avatar+501 
+1

I'm trying to prove that the average of n nsinn(n=2,4,6,,180) is cot1

 Jul 16, 2019
edited by Davis  Jul 16, 2019
edited by Davis  Jul 16, 2019
 #3
avatar+118703 
+1

Well then I do not think you should be working on both sides at once.

You work on one side and show that it is equivalent to the other side.

Melody  Jul 16, 2019
 #4
avatar+501 
+1

?

If I show that the equation simplifies to cos(1)=cos(1) or something, doesn't that work too?

Davis  Jul 16, 2019
 #5
avatar+118703 
+1

Umm not sure.

I have seen that done convincingly before but it is not usual.

I do not think it is worded as a 'proof' but maybe just as 'show'.

You have not used either word in your original question.

 

I am not familiar with the  sum-to-product  identity.

Melody  Jul 16, 2019
 #9
avatar+501 
+1

When I write the actual proof, I will modify it so it only does stuff to LHS

Davis  Jul 16, 2019
 #6
avatar+26397 
+3

What did I do wrong?

 

Line 3:  2(sin2+sin4++sin88)+sin90=cos1sin1

 

sin90 only once!

 

laugh

 Jul 16, 2019
 #7
avatar+501 
0

?

line 3 is not wrong

Its 2(sin2+sin4++sin88+sin90)=cos1sin1

NVM im a idiot

Davis  Jul 16, 2019
edited by Davis  Jul 16, 2019
edited by Davis  Jul 17, 2019
 #10
avatar+26397 
+3

What did I do wrong?

2sin2+4sin4++178sin178+180sin180=90cot1

 

2sin2+4sin4++176sin176+178sin178+180sin180=90cot12sin2+4sin4++88sin88+90sin90+92sin92++176sin176+178sin178+180sin180=0=90cot12sin2+4sin4++88sin88+90sin90+92sin92++176sin176+178sin178=90cot12sin2+4sin4++88sin88+90sin90+92sin(18092)++176sin(180176)+178sin(180178)=90cot12sin2+4sin4++88sin88+90sin90+92sin88++176sin4+178sin2=90cot12sin2+4sin4++88sin88+90sin90178sin2+176sin4++92sin88=90cot1(2+178)sin2+(4+176)sin4++(88+92)sin88+90sin90=90cot1180sin2+180sin4++180sin88+90sin90=90cot1|:902sin2+2sin4++2sin88+sin90=cot12sin2+2sin4++2sin88+sin90=cos1sin1|sin12sin1sin2+2sin1sin4++2sin1sin88+sin1sin90=cos1cos1cos3+cos3cos5++cos87cos89+sin1sin90=cos1cos1cos89+sin1sin90=12(cos89cos91)=cos1cos1cos89+12(cos89cos91)=cos1cos1cos89+12cos8912cos91=cos1cos112cos8912cos91=cos1cos112(cos89+cos91)=cos1cos91=cos(18091)=cos89cos112(cos89cos89)=cos1cos10=cos1cos1=cos1

 

 

laugh

heureka  Jul 16, 2019
 #12
avatar+130477 
+2

Very nice, heureka !!!!

 

 

cool cool cool

CPhill  Jul 16, 2019
 #13
avatar+26397 
+2

Thank You, CPhill !

 

laugh

heureka  Jul 17, 2019
 #8
avatar+501 
+1

Will be gone for ~1.5 hours

 Jul 16, 2019
 #11
avatar+26397 
+3

if line 3 is not wrong, why don't you get  cos1=cos1 ?

 

I got it out !

 

laugh

 Jul 16, 2019
edited by heureka  Jul 16, 2019
 #14
avatar+501 
+2

Thanks!

Davis  Jul 17, 2019
 #15
avatar+501 
+4

I re-wrote the proof by myself to make sure I got it:

Prove of 2sin2+4sin4++178sin178+180sin18090=cot1:

L.H.S.= 2sin2+4sin4++178sin178+180sin18090=cot1
 
We can use the identity sinx=sin(180x) to get:

L.H.S.= 2sin2+178sin178+180sin180+4sin4+90=cot1

We can simplify to get:

L.H.S.= 2(sin2+sin4++sin88)+sin90

We can multiply by sin1sin1 to get:

L.H.S.= 2(sin2sin1+sin4sin1++sin88sin1)+sin90sin1sin1

Then, we can use the sum-to-product (or Prosthaphaeresis :)) identities to get:

L.H.S.= cos1cos3+cos3cos5++cos87cos89+sin90sin1sin1

We can cancel the terms to get:

L.H.S.= cos1cos89+cos89cos912sin1

We can simplify to get:

L.H.S.= cos1cos89+cos912sin1

We can use the identity cosx=cos(180x) to get:

L.H.S.= cos1cos89cos892sin1

L.H.S.= cos1sin1=cot1 R.H.S.= cot1

L.H.S.=R.H.S.

If 2sin2+4sin4++178sin178+180sin18090=cot1, that means the average of nsinn(n=2,4,6,,180) is cot1.

Therefore, the average of nsinn(n=2,4,6,,180)is cot1.

 Jul 17, 2019

1 Online Users