2sin2∘+4sin4∘+⋯+178sin178∘+180sin180∘=90⋅cot1∘
2sin2∘+4sin4∘+⋯+178sin178∘+180sin180∘=90⋅cos1sin1
We can use the identity sinx=sin(180∘−x) and simplify to get:
2⋅(sin2∘+sin4∘+⋯+sin88∘+sin90∘)=cos1∘sin1∘
We can multiply by sin1∘ to get:
2⋅(sin2∘⋅sin1∘+sin4∘⋅sin1∘+⋯+sin88∘⋅sin1∘+sin90∘⋅sin1∘)=cos1∘
Then, we can use the sum-to-product (or Prosthaphaeresis :)) identities to get:
cos1∘−cos3∘+cos3∘−cos5∘+⋯+cos87∘−cos89∘+cos89∘−cos91∘=cos1∘
We can cancel the terms to get:
cos1∘−cos91∘=cos1∘
My other proof that also has some error in it:
2sin2∘+4sin4∘+⋯+178sin178∘+180sin180∘=90⋅cot1∘
2sin2∘+4sin4∘+⋯+178sin178∘+180sin180∘=90⋅cos1sin1
We can use the identity sinx=sin(180∘−x) and simplify to get:
2⋅(sin2∘+sin4∘+⋯+sin88∘)+2=cos1∘sin1∘
We can multiply by sin1∘ to get:
2⋅(sin2∘⋅sin1∘+sin4∘⋅sin1∘+⋯+sin88∘⋅sin1∘)+2⋅sin1∘=cos1∘
Then, we can use the sum-to-product (or Prosthaphaeresis :)) identities to get:
cos1∘−cos3∘+cos3∘−cos5∘+⋯+cos87∘−cos89∘+2⋅sin1∘=cos1∘
We can cancel the terms to get:
cos1∘−cos89∘+2⋅sin1∘=cos1∘
We can use the identity sinx=cos(x−90∘) to get
cos1∘+sin1∘=cos1∘
What are you actually trying to do?
I have not checked the last three lines but the rest of the logic looks ok.
BUT what is the question?
Well then I do not think you should be working on both sides at once.
You work on one side and show that it is equivalent to the other side.
?
If I show that the equation simplifies to cos(1)=cos(1) or something, doesn't that work too?
What did I do wrong?
Line 3: 2⋅(sin2∘+sin4∘+⋯+sin88∘)+sin90∘=cos1∘sin1∘
sin90∘ only once!
What did I do wrong?
2sin2∘+4sin4∘+⋯+178sin178∘+180sin180∘=90⋅cot1∘
2sin2∘+4sin4∘+⋯+176sin176∘+178sin178∘+180sin180∘=90⋅cot1∘2sin2∘+4sin4∘+⋯+88sin88∘+90sin90∘+92sin92∘+⋯+176sin176∘+178sin178∘+180sin180∘⏟=0=90⋅cot1∘2sin2∘+4sin4∘+⋯+88sin88∘+90sin90∘+92sin92∘+⋯+176sin176∘+178sin178∘=90⋅cot1∘2sin2∘+4sin4∘+⋯+88sin88∘+90sin90∘+92sin(180∘−92∘)+⋯+176sin(180∘−176∘)+178sin(180∘−178∘)=90⋅cot1∘2sin2∘+4sin4∘+⋯+88sin88∘+90sin90∘+92sin88∘+⋯+176sin4∘+178sin2∘=90⋅cot1∘2sin2∘+4sin4∘+⋯+88sin88∘+90sin90∘178sin2∘+176sin4∘+⋯+92sin88∘=90⋅cot1∘(2+178)sin2∘+(4+176)sin4∘+⋯+(88+92)sin88∘+90sin90∘=90⋅cot1∘180sin2∘+180sin4∘+⋯+180sin88∘+90sin90∘=90⋅cot1∘|:902sin2∘+2sin4∘+⋯+2sin88∘+sin90∘=cot1∘2sin2∘+2sin4∘+⋯+2sin88∘+sin90∘=cos1∘sin1∘|⋅sin1∘2sin1∘sin2∘+2sin1∘sin4∘+⋯+2sin1∘sin88∘+sin1∘sin90∘=cos1∘cos1∘−cos3∘+cos3∘−cos5∘+⋯+cos87∘−cos89∘+sin1∘sin90∘=cos1∘cos1∘−cos89∘+sin1∘sin90∘⏟=12(cos89∘−cos91∘)=cos1∘cos1∘−cos89∘+12(cos89∘−cos91∘)=cos1∘cos1∘−cos89∘+12cos89∘−12cos91∘=cos1∘cos1∘−12cos89∘−12cos91∘=cos1∘cos1∘−12(cos89∘+cos91∘)=cos1∘cos91∘=−cos(180∘−91∘)=−cos89∘cos1∘−12(cos89∘−cos89∘)=cos1∘cos1∘−0=cos1∘cos1∘=cos1∘
I re-wrote the proof by myself to make sure I got it:
Prove of 2⋅sin2∘+4⋅sin4∘+⋯+178⋅sin178∘+180⋅sin180∘90=cot1∘:
L.H.S.= 2⋅sin2∘+4⋅sin4∘+⋯+178⋅sin178∘+180⋅sin180∘90=cot1∘
We can use the identity sinx=sin(180∘−x) to get:
L.H.S.= 2⋅sin2∘+178⋅sin178∘+180⋅sin180∘+4⋅sin4∘+⋯90=cot1∘
We can simplify to get:
L.H.S.= 2⋅(sin2∘+sin4∘+⋯+sin88∘)+sin90∘
We can multiply by sin1∘sin1∘ to get:
L.H.S.= 2⋅(sin2∘⋅sin1∘+sin4∘⋅sin1∘+⋯+sin88∘⋅sin1∘)+sin90∘⋅sin1∘sin1∘
Then, we can use the sum-to-product (or Prosthaphaeresis :)) identities to get:
L.H.S.= cos1∘−cos3∘+cos3∘−cos5∘+⋯+cos87∘−cos89∘+sin90∘⋅sin1∘sin1∘
We can cancel the terms to get:
L.H.S.= cos1∘−cos89∘+cos89∘−cos91∘2sin1∘
We can simplify to get:
L.H.S.= cos1∘−cos89∘+cos91∘2sin1∘
We can use the identity cosx=cos(180−x) to get:
L.H.S.= cos1∘−cos89∘−cos89∘2sin1∘
L.H.S.= cos1∘sin1∘=cot1∘ R.H.S.= cot1∘
L.H.S.=R.H.S.
If 2⋅sin2∘+4⋅sin4∘+⋯+178⋅sin178∘+180⋅sin180∘90=cot1∘, that means the average of nsinn∘(n=2,4,6,…,180) is cot1∘.
Therefore, the average of nsinn∘(n=2,4,6,…,180)is cot1∘.