heureka

avatar
Usernameheureka
Score26400
Membership
Stats
Questions 17
Answers 5678

 #2
avatar+26400 
+2

The number \(210\) can be written as the sum of consecutive integers in several ways.
(a) When Written as the sum of the greatest possible number of consecutive positive integers, what is the largest of these integers?
(b) What if we allow negative integerrs into the sum; then what is the greatest possible number of consecutive integers that sum to \(210\)?


Arithmetic progression:
\(\begin{array}{|rcll|} \hline a_n &=& a_1+(n-1)*d \quad | \quad d=1 \\ a_n &=& a_1+(n-1)*1 \\ a_n &=& a_1+n-1 \\ \mathbf{n} &=& \mathbf{a_n-a_1+1} \\ \hline \end{array}\)


Sum of the Arithmetic progression:
\(\begin{array}{|rcll|} \hline \text{sum} &=& \dfrac{a_1+a_n}{2}*n \quad &|\quad \text{sum} = 210 \\\\ 210 &=& \dfrac{a_1+a_n}{2}*n \\\\ \left(\dfrac{a_1+a_n}{2}\right)*n &=& 210 \\\\ \mathbf{(a_1+a_n)*n} &=& \mathbf{420} \\ \hline \end{array}\)

 

The divisors of \(420\) are:
Divisors:
 1 |  2 |  3 |  4 |   5 |   6 |   7 | 10 |
12 | 14 | 15 | 20 |  21 |  28 |  30 | 35 |
42 | 60 | 70 | 84 | 105 | 140 | 210 | 420  (24 divisors)

 

\(\text{Let $a_1+a_n=k\quad$or$\quad \mathbf{a_n=k-a_1}$} \)

 

\(\begin{array}{|rcll|} \hline (a_1+a_n)*n &=& 420 \\ k*n &=& 1*420 \\ &=& 2*210 \\ &=& 3*140 \\ &=& 4*105 \\ &=& 5*84 \\ &=& 6*70 \\ &=& 7*60 \\ &=& 10*42 \\ &=& 12*35 \\ &=& 14*30 \\ &=& 15*28 \\ &=& 20*21 \\ &=& 21*20 \\ &=& 28*15 \\ &=& 30*14 \\ &=& 35*12 \\ &=& 42*10 \\ &=& 60*7 \\ &=& 70*6 \\ &=& 84*5 \\ &=& 105*4 \\ &=& 140*3 \\ &=& 210*2 \\ &=& 420*1 \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline n &=& a_n-a_1+1 \quad &| \quad a_n = k - a_1 \\ n &=& k-a_1-a_1+1 \\ n &=& k-2a_1+1 \\ 2a_1 &=& 1+k-n \\\\ \mathbf{a_1} &=& \mathbf{ \dfrac{1+k-n}{2} } \\ \hline \mathbf{a_n} &=& \mathbf{ k-a_1 } \\ \hline \end{array}\)

 

\(\begin{array}{|r|r|r|r|r|l|} \hline k*n & k & n & a_1 & a_n & \text{Arithmetic} \\ &&&& & \text{progression} \\ \hline 1*420 & 1 &\color{red}420 & -209 & 210 &-209,-208,\dots,209,210 \\ 2*210 & 2 & 210 & (-103.5)& &\text{$a_1$ no integer } \\ 3*140 & 3 & 140 & -68 & 71 &-68,-67,\dots,70,71 \\ 4*105 & 4 & 105 & -50 & 54 &-50,-49,\dots,53,54 \\ 5*84 & 5 & 84 & -39 & 44 &-39,-38,\dots,43,44 \\ 6*70 & 6 & 70 & (-31.5)& &\text{$a_1$ no integer } \\ 7*60 & 7 & 60 & -26 & 33 &-26,-25,\dots,32,33 \\ 10*42 & 10 & 42 & (-15.5)& &\text{$a_1$ no integer } \\ 12*35 & 12 & 35 & -11 & 23 &-11,-10,\dots,22,23\\ 14*30 & 14 & 30 & (-7.5)& &\text{$a_1$ no integer } \\ 15*28 & 15 & 28 & -6 & 21 &-6,-5,\dots,20,21\\ \hline 20*21 & 20 & 21 & (0) & 20 &\text{$a_1$ no integer } \\ \hline 21*20 & 21 & \color{red}20 & 1 & 20 & 1,2,\dots,19,20 \\ 28*15 & 28 & 15 & 7 & 21 & 7,8,\dots,20,21\\ 30*14 & 30 & 14 & (8.5)& &\text{$a_1$ no integer } \\ 35*12 & 35 & 12 & 12 & 23 & 12,13,\dots,22,23\\ 42*10 & 42 & 10 & (16.5)& &\text{$a_1$ no integer } \\ 60*7 & 60 & 7 & 27 & 33 & 27,28,\dots,32,33\\ 70*6 & 70 & 6 & (32.5)& &\text{$a_1$ no integer } \\ 84*5 & 84 & 5 & 40 & 44 & 40,41,42,43,44 \\ 105*4 &105 & 4 & 51 & 54 & 51,52,53,54\\ 140*3 &140 & 3 & 69 & 71 & 69,70,71\\ 210*2 &210 & 2 & (104.5)& &\text{$a_1$ no integer } \\ 420*1 &420 & 1 & 210 & 210 & 210 \\ \hline \end{array}\)

 

(a) 20
(b) 420

 

laugh

May 24, 2021
 #1
avatar+26400 
+2

For how many integer values of \(\color{red}a\) does the equation
\(x^2 + ax + 28a = 0\)
have integer solutions for
x?

 

\(\text{Let the roots are $r_1$ and $r_2$}:\)

 

Vieta:

\(\begin{array}{|rcll|} \hline x^2 \underbrace{+a}_{=-(r_1+r_2)}x \underbrace{+ 28a}_{=r_1r_2} \\ \hline \mathbf{a} &=& \mathbf{-(r_1+r_2)} \\ 28a &=& r_1r_2 \\ 28\left(-(r_1+r_2)\right) &=& r_1r_2 \\ -28r_1-28r_2 &=& r_1r_2 \\ r_1r_2+28r_1+28r_2 &=& 0 \\ (r_1+28)(r_2+28) -28*28 &=& 0 \\ (r_1+28)(r_2+28)&=& 28*28 \\ \mathbf{(r_1+28)(r_2+28)}&=& \mathbf{784} \\ \hline \end{array}\)

 

The divisors of 784 are:
  1 |  2 |  4 |   7 |   8 |  14 |  16 | 28 |
 49 | 56 | 98 | 112 | 196 | 392 | 784  (15 divisors)

 

\(\begin{array}{|rcll|} \hline (r_1+28)(r_2+28)&=& 1*784 \\ &=& 2*392 \\ &=& 4*196 \\ &=& 7*112 \\ &=& 8*98 \\ &=& 14*56 \\ &=& 16*49 \\ &=& 28*28 \\ \hline \end{array}\)

 

\(\begin{array}{|r|r|r|r|r|} \hline (r_1+28) & r_1 & (r_2+28) &r_2 & a=-r_1-r_2 \\ \hline 1 & 1-28 = -27 & 784 & 784-28=756 & 27-756=\color{red}-729 \\ 2 & 2-28 = -26 & 392 & 392-28=364 & 26-364=\color{red}-338 \\ 4 & 4-28 = -24 & 196 & 196-28=168 & 24-168=\color{red}-144 \\ 7 & 7-28 = -21 & 112 & 112-28= 74 & 21-74=\color{red}-53 \\ 8 & 8-28 = -20 & 98 & 98-28= 70 & 20-70=\color{red}-50 \\ 14 & 14-28 = -14 & 56 & 56-28= 28 & 14-28=\color{red}-14 \\ 16 & 16-28 = -12 & 49 & 49-28= 21 & 12-21=\color{red}-9 \\ 28 & 28-28 = 0 & 28 & 28-28= 0 & -0-0=\color{red}0 \\ \hline 49 & 49-28= 21 & 16 & 16-28 = -12 & -21+12=\color{red}-9 \\ 56 & 56-28= 28 & 14 & 14-28 = -14 & -28+14=\color{red}-14 \\ 98 & 98-28= 70 & 8 & 8-28 = -20 & -70+20=\color{red}-50 \\ 112 & 112-28= 74 & 7 & 7-28 = -21 & -74+21=\color{red}-53 \\ 196 & 196-28=168 & 4 & 4-28 = -24 & -168+24=\color{red}-144 \\ 392 & 392-28=364 & 2 & 2-28 = -26 & -364+26=\color{red}-338 \\ 784 & 784-28=756 & 1 & 1-28 = -27 & -756+27=\color{red}-729 \\ \hline \end{array}\)

 

Distinct Integer values of \(\color{red} a\) are 7 without \(a= 0\): \(\mathbf{\{ -9,~-14,~-50,~-53~-144,~-338,~-729\}}\)

 

laugh

May 24, 2021
 #1
avatar+26400 
+1

Let a, b, and c be positive real numbers.

Prove that \(a^2 + b^2 + c^2 >= ab + ac + bc\).


\(\large{AM\ge GM}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{\dfrac{a+b}{2}} &\ge& \mathbf{\sqrt{ab}} \\ a+b &\ge& 2\sqrt{ab} \quad &| \quad \text{square both sides} \\ (a+b)^2 &\ge& 4ab \\ a^2+2ab+b^2 &\ge& 4ab \quad &| \quad -2ab \\ a^2+b^2 &\ge& 4ab-2ab \\ \mathbf{a^2+b^2} &\ge& \mathbf{2ab} \\ \hline \end{array}\\ \begin{array}{|rcll|} \hline \mathbf{\dfrac{b+c}{2}} &\ge& \mathbf{\sqrt{bc}} \\ b+c &\ge& 2\sqrt{bc} \quad &| \quad \text{square both sides} \\ (b+c)^2 &\ge& 4bc \\ b^2+2bc+c^2 &\ge& 4bc \quad &| \quad -2bc \\ b^2+c^2 &\ge& 4bc-2bc \\ \mathbf{b^2+c^2} &\ge& \mathbf{2bc} \\ \hline \end{array}\\ \begin{array}{|rcll|} \hline \mathbf{\dfrac{a+c}{2}} &\ge& \mathbf{\sqrt{ac}} \\ a+c &\ge& 2\sqrt{ac} \quad &| \quad \text{square both sides} \\ (a+c)^2 &\ge& 4ac \\ a^2+2ac+c^2 &\ge& 4ac \quad &| \quad -2ac \\ a^2+c^2 &\ge& 4ac-2ac \\ \mathbf{a^2+c^2} &\ge& \mathbf{2ac} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \mathbf{a^2+b^2} &\ge& \mathbf{2ab} \\ \mathbf{b^2+c^2} &\ge& \mathbf{2bc} \\ \mathbf{a^2+c^2} &\ge& \mathbf{2ac} \\ \hline (a^2+b^2)+(b^2+c^2) + (a^2+c^2) &\ge& 2ab + 2bc +2ac \\ 2a^2+2b^2+2c^2 &\ge& 2(ab +bc +ac)\\ 2(a^2+b^2+c^2) &\ge& 2(ab +bc +ac) \quad &| \quad : 2\\ \mathbf{a^2+b^2+c^2} &\ge& \mathbf{ab +bc +ac} \\ \hline \end{array}\)

 

Under what conditions does equality occur? 

\(\begin{array}{|rcll|} \hline 2(a^2+b^2+c^2) &=& 2(ab +bc +ac) \\ 2(a^2+b^2+c^2)- 2(ab +bc +ac) &=& 0 \\ \hline \end{array}\\ 2(a^2+b^2+c^2)- 2(ab +bc +ac) =(a-b)^2+(b-c)^2+(c-a)^2 \\ \begin{array}{|lcll|} \hline (\underbrace{a-b}_{=0})^2+(\underbrace{b-c}_{=0})^2+(\underbrace{c-a}_{=0})^2&=& 0 \\ \hline \end{array}\\ \begin{array}{|rcll|} \hline a-b&=& 0 \\ a&=& b \\\\ b-c&=& 0 \\ b&=& c \\\\ c-a &=& 0 \\ c&=& a \\ \hline \end{array}\)

equality occur when \(a=b=c\)

 

laugh

May 23, 2021
 #2
avatar+26400 
+1

The Lucas sequence is the sequence \(1,~ 3,~ 4,~ 7,~ 11,~\dots\)
where the first term is 1,
the second term is 3 and each term after that is the sum of the previous two terms.
What is the remainder when the 100th term of the sequence is divided by 20?

 

In number theory, the nth Pisano period, written p(n), is the period with which
the sequence taken modulo n repeats.

The Pisano periods of Lucas numbers are
     1,  3,  8,  6,  4, 24, 16, 12, 24, 12,
    10, 24, 28, 48,  8, 24, 36, 24, 18, \({\color{red}12}\),
    16, 30, 48, 24, 20, 84, 72, 48, 14, 24,
    30, 48, 40, 36, 16, 24, 76, 18, 56, 12,
    40, 48, 88, 30, 24, 48, 32,  \(\dots\) (sequence A106291 in the OEIS)
Source:
https://en.wikipedia.org/wiki/Pisano_period

 

\(\begin{array}{|r|r|r|} \hline n &\text{Lucas numbers} \quad L(n) & L(n)\pmod{20} \\ \hline 1 &1 & \color{blue}1\\ 2 &3 & \color{blue}3 \\ 3 &4 &\color{blue}4\\ 4 &7 &\color{blue}7\\ 5 &11& \color{blue}11\\ 6 &18 &\color{blue}18\\ 7 &29 &\color{blue}9\\ 8 &47 &\color{blue}7\\ 9 &76 &\color{blue}16\\ 10 &123 &\color{blue}3\\ 11 &199&\color{blue}19\\ \color{red}12 &322&\color{blue}2\\ \hline 13 &521& 1\\ 14 &843 &3\\ 15 &1364&4\\ 16 &2207&7\\ \ldots & \ldots & \ldots \\ \hline \end{array}\)

 

Lucas number \(\pmod{20}\) cycle is \(\begin{array}{rrrrrrrrrrrrr} \text{period} & \{ 1,&3,&4,&\color{red}7,&11,&18,&9,&7,&16,&3,&19,&2\} \\ \text{index} & \{ 1,&2,&3&\color{red}4,&5,&6,&7,&8,&9,&10,&11,&0(12)\} \\ \end{array}\)

The cycle length is \( \color{red}12\).

 

cycle index for \(L(100) \pmod{20}\) is  \(100 \pmod{12} ={\color{red} 4}\)

 

\(L(100) \pmod{20} = \color{red}7\)

 

The remainder when the 100th term of the sequence is divided by 20 is 7

 

laugh

May 23, 2021