Sure!
1. So let's simplify (1+x)*(5+x)=(3+x)*(2+x) using the First Outer Inner Last method.
2. (1+x)*(5+x)...
First: 1*5=5
Outer: 1*x=x
Inner: x*5=5x
Last: x*x=x^2
Sum: 5+x+5x+x^2=6x+5+x^2
3. (3+x)*(2+x)...
First: 3*2=6
Outer: 3*x=3x
Inner: x*2=2x
Last: x*x=x^2
Sum: 6+3x+2x+x^2=5x+6+x^2
4. Rewrite equation as 6x+5+x^2=5x+6+x^2
5. Subtract 5 from both sides turning the equation into 6x+x^2=5x+1+x^2
6. Cancel out x^2 from both sides turning the equation into 6x=5x+1.
7. Subtract 5x from both sides and you get x=1.
Answer: x=1