radix

avatar
Usernameradix
Score14538
Membership
Stats
Questions 53
Answers 5045

 #1
avatar+14538 
+3

Hallo Anonymous,

ich habe deine 3 Gleichungen als  diophantische Gleichungen aufgefasst und sie dann auch einzeln gelöst.

http://de.wikipedia.org/wiki/Diophantische_Gleichung

1.)   $${\frac{{\mathtt{x}}}{{\mathtt{2}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{y}}}{{\mathtt{3}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{z}}}{{\mathtt{5}}}} = {\mathtt{71}}$$        =>     x = 136   ;     y = 3    ;      z = 10

 

2.)   $${\frac{{\mathtt{x}}}{{\mathtt{3}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{y}}}{{\mathtt{5}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{z}}}{{\mathtt{2}}}} = {\mathtt{57}}$$       =>      x = 162    ;    y = 5    ;      z = 4

 

3.)   $${\frac{{\mathtt{x}}}{{\mathtt{5}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{y}}}{{\mathtt{2}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{z}}}{{\mathtt{3}}}} = {\mathtt{58}}$$        =>     x = 275    ;    y = 2    ;      z = 6

 

Gruß radix !

Jun 7, 2015