Interesting problem.
We treat the staircase as a space curve.
\(r(t)=\{7 \cos(2 \pi t), 7 \sin(2 \pi t), 37 t\},~~~~0\leq t \leq 1\)
To find the length of the curve we integrate the norm of the time derivative of the curve.
\(L = \displaystyle{\int_0^1}\|\dot{r}\|~dt\)
\(\dot{r}=\{-14\pi \sin(2 \pi t), 14\pi \cos(2\pi t), 37\}\\ \|\dot{r}\| = \sqrt{(14\pi)^2+37^2} \\ L=\displaystyle{\int_0^1}\sqrt{(14\pi)^2+37^2}~dt = \sqrt{(14\pi)^2+37^2}\approx 57.48 ft\)
.