\(\overline{\rm AC}\) is the hypotenuse of \(\triangle {\rm ACD} \text{ and } \triangle {\rm ABC}\). We can use Pythagorean's Theorem to find that missing length, which will enable us to find the area of the quadrilateral.
\({\rm AD}^2 + {\rm CD}^2 = {\rm AC}^2 \\ {\rm AD}^2 + 4^2 = 6^2 \\ {\rm AD}^2 + 16 = 36 \\ {\rm AD}^2 = 20 \\ {\rm AD} = \sqrt{20} = 2\sqrt{5}\) | \({\rm BC}^2 + {\rm AB}^2 = {\rm AC}^2 \\ {\rm BC}^2 + 2^2 = 6^2 \\ {\rm BC}^2 + 4 = 36 \\ {\rm BC}^2 = 32 \\ {\rm BC} = \sqrt{32} = 4\sqrt{2}\) |
Now, we can find the area of the triangles since we have the length of the base and the height of the triangles.
\(A_{\triangle ACD} = \frac{1}{2} * {\rm AD} * {\rm CD} \\ A_{\triangle ACD} = \frac{1}{2} * 2\sqrt{5} * 4 \\ A_{\triangle ACD} = 4\sqrt{5}\) | \(A_{\triangle ABC} = \frac{1}{2} * {\rm AB} * {\rm BC} \\ A_{\triangle ABC} = \frac{1}{2} * 2 * 4\sqrt{2} \\ A_{\triangle ABC} = 4\sqrt{2}\) |
Now, add the areas together to get the area of the whole quadrilateral.
\(A_{\rm ABCD} = A_{\triangle ACD} + A_{\triangle ABC} \\ A_{\rm ABCD} = 4\sqrt{5} + 4\sqrt{2}\)
.