\(5x^2-11x+4=0\)
\(x_{1,\:2}=\frac{-\left(-11\right)\pm \sqrt{\left(-11\right)^2-4\cdot \:5\cdot \:4}}{2\cdot \:5}\)
\(x_{1,\:2}=\frac{-\left(-11\right)\pm \sqrt{41}}{2\cdot \:5}\)
\(x_1=\frac{-\left(-11\right)+\sqrt{41}}{2\cdot \:5},\:x_2=\frac{-\left(-11\right)-\sqrt{41}}{2\cdot \:5}\)
\(x=\frac{11+\sqrt{41}}{10},\:x=\frac{11-\sqrt{41}}{10}\)
1/(a+1)=\(\frac{21-\sqrt{41}}{40}\)
1/(b+1)=\(\frac{21+\sqrt41}{40}\)
total=\(\frac{21}{20}\)
.