3x^2 = 7(x-3) simplify
3x^2 = 7x - 21 rearranging gives us
3x^2 - 7x + 21 = 0 this can't be factored, so using the quadratic formula and the on-site solver, we have non-real solutions
$${\mathtt{3}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{7}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{21}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{203}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,-\,}}{\mathtt{7}}\right)}{{\mathtt{6}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{203}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,\small\textbf+\,}}{\mathtt{7}}\right)}{{\mathtt{6}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}\left({\mathtt{\,-\,}}{\frac{{\mathtt{7}}}{{\mathtt{6}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2.374\: \!634\: \!474\: \!796\: \!494\: \!3}}{i}\right)\\
{\mathtt{x}} = {\frac{{\mathtt{7}}}{{\mathtt{6}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2.374\: \!634\: \!474\: \!796\: \!494\: \!3}}{i}\\
\end{array} \right\}$$

.