+0  
 
0
613
2
avatar

Write the following equation in standard form, and then solve. 3x^2 = 7(x-3)

 Oct 25, 2014

Best Answer 

 #2
avatar+118724 
+10

CPhill's answer shows you that there are no real solutions.

The parabola y=3x^2-7x+21   would lie completely above the y axis.

 Oct 25, 2014
 #1
avatar+130544 
+5

3x^2 = 7(x-3)    simplify

3x^2 = 7x - 21        rearranging gives us

3x^2 - 7x + 21 = 0     this can't be factored, so using the quadratic formula and the on-site solver, we have non-real solutions

$${\mathtt{3}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{7}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{21}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{203}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,-\,}}{\mathtt{7}}\right)}{{\mathtt{6}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{203}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,\small\textbf+\,}}{\mathtt{7}}\right)}{{\mathtt{6}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}\left({\mathtt{\,-\,}}{\frac{{\mathtt{7}}}{{\mathtt{6}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2.374\: \!634\: \!474\: \!796\: \!494\: \!3}}{i}\right)\\
{\mathtt{x}} = {\frac{{\mathtt{7}}}{{\mathtt{6}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2.374\: \!634\: \!474\: \!796\: \!494\: \!3}}{i}\\
\end{array} \right\}$$

 Oct 25, 2014
 #2
avatar+118724 
+10
Best Answer

CPhill's answer shows you that there are no real solutions.

The parabola y=3x^2-7x+21   would lie completely above the y axis.

Melody Oct 25, 2014

5 Online Users

avatar