a) To show that v0 sqrt(2) / 32 x [sin(2A) - cos(2A) - 1] equals v0 sqrt(2) / 16 x cos(A) x [sin(A) - cos(A)]
---> v0 sqrt(2) / 16 x (1/2)[sin(2A) - cos(2A) - 1] equals v0 sqrt(2) / 16 x cos(A) x [sin(A) - cos(A)]
---> (1/2)[sin(2A) - cos(2A) - 1] equals cos(A) x [sin(A) - cos(A)]
---> But: sin(2A) = 2sin(A)cos(A) and cos(2A) = 2cos2(A) - 1
---> Left side:
(1/2)[2sin(A)cos(A) - (2cos2(A) - 1) - 1]
= (1/2)[2sin(A)cos(A) - 2cos2(A) + 1 - 1]
= (1/2)[2sin(A)cos(A) - 2cos2(A)]
= sin(A)cos(A) - cos2(A)
= cos(A)[sin(A) - cos(A) <--- which equals the right side.
b) sin(2A) + cos(2A ) = 0
---> sin(2A) = -cos(2A) (now divide both sides by cos(2A):
---> sin(2A) / cos(2A) = -1
---> tan(2A) = -1
---> 2A = 135°
---> A = 67.5°
c) Place these values into the equation, and you will find the maximum distance is 0.586 feet (approx).