+0  
 
0
887
1
avatar+1904 

An object is propelled upward at an angle, \(\Theta \)\(45°<\Theta <90°,\)to the horizontal with an initinal velocity of \(v_0\) feet per second from the base of a plane that makes an angle 45° with the horizontal.  If air resistance is ignored, the distance \(R\) that travels up the inclined plane is given by the function \(R(\Theta) = \frac{v_0\sqrt{2}}{16}\times cos(\Theta)\times(sin(\Theta)-cos(\Theta))\)

 

(a) Show that \(R(\Theta) = \frac{v_0\sqrt{2}}{32}\times[sin(2\Theta)-cos(2\Theta)-1]\)

 

(b) In calculus, you will be asked to find the angle \(\Theta \) that maximizes \(R\) by solving the equation \(sin(2\Theta)+cos(2\Theta) = 0\).  Solve this equation for \(\Theta.\)

 

(c) What is the maxium distance \(R\) if \(v_0 = 32\) feet per second?

 

(d) Graph \(R = R(\Theta),\) \(45°≤\Theta ≤90°,\) and find the angle \(\Theta \) that maximizes the distance.  Use \(v_0 = 32\) feet per second.  Compare the results with the answers found eariler

 Mar 19, 2016
 #1
avatar+23252 
+5

a)  To show that vsqrt(2) / 32 x [sin(2A) - cos(2A) - 1]  equals  v0 sqrt(2) / 16 x cos(A) x [sin(A) - cos(A)]

      --->              vsqrt(2) / 16 x (1/2)[sin(2A) - cos(2A) - 1]  equals v0 sqrt(2) / 16 x cos(A) x [sin(A) - cos(A)]

      --->              (1/2)[sin(2A) - cos(2A) - 1]  equals    cos(A) x [sin(A) - cos(A)]          

      --->  But:  sin(2A)  =  2sin(A)cos(A)   and  cos(2A)  =  2cos2(A) - 1

      --->  Left side:          

                       (1/2)[2sin(A)cos(A) - (2cos2(A) - 1) - 1]

                                =  (1/2)[2sin(A)cos(A) - 2cos2(A) + 1 - 1]

                                =  (1/2)[2sin(A)cos(A) - 2cos2(A)]

                                =  sin(A)cos(A) - cos2(A)

                                =  cos(A)[sin(A) - cos(A)    <--- which equals the right side.

 

b)  sin(2A) + cos(2A )  =  0

     --->   sin(2A)  =  -cos(2A)             (now divide both sides by cos(2A):

     --->   sin(2A) / cos(2A)  =  -1

     --->   tan(2A)  =  -1

     --->  2A  =  135°

     --->     A  =  67.5°

 

c)  Place these values into the equation, and you will find the maximum distance is 0.586 feet (approx).

 Mar 19, 2016

2 Online Users

avatar