http://www.cymath.com/answer.php?q=simplify%20%5B((e%5E(10x)%20-%20e%5E- 10x)%20%20%2F%20%202)%20-%20((e%5E(10x)%20%2B%20e%5E-10x)%2F2) %5D%5E10
Let A = e10x and let B = e-10x.
Ignoring the outside exponent for a while, the problem becomes [ (A - B) / 2 ] - [ (A + B) / 2 ]
= [A/2 - B/2] - [A/2 + B/2] = A/2 - B/2 - A/2 - B/2 = - 2B/2 = - B which is -e-10x
Bringing the exponent back into the problem: (-e-10x)10 = e-100x
because a negative number to an even exponent is positive, and you need to multiply the exponents.
simplify: [ ((e10x - e-10x)/2) - ((e10x + e-10x)/2) ]10
need help!!!
\(\begin{array}{rcll} \left( \frac{e^{10x} - e^{-10x} } {2} - \frac{e^{10x} + e^{-10x} } {2} \right)^{10} &=& \left[ \frac{e^{10x} - e^{-10x} -( e^{10x} + e^{-10x} )} {2} \right]^{10} \\\\ &=& \left( \frac{e^{10x} - e^{-10x} - e^{10x} - e^{-10x} } {2} \right)^{10} \\\\ &=& \left( \frac{e^{10x}- e^{10x} - e^{-10x} - e^{-10x} } {2} \right)^{10} \\\\ &=& \left( \frac{ 0 - e^{-10x} - e^{-10x} } {2} \right)^{10} \\\\ &=& \left( \frac{ - e^{-10x} - e^{-10x} } {2} \right)^{10} \\\\ &=& \left( \frac{- 2\cdot e^{-10x} } {2} \right)^{10} \\\\ &=& \left( -e^{-10x} \right)^{10} \\\\ &=& \left[ (-1)\cdot e^{-10x} \right]^{10} \\\\ &=& (-1)^{10}\cdot e^{-10\cdot 10 x} \\\\ &=& 1\cdot e^{-10\cdot 10 x} \\\\ &=& 1\cdot e^{-100 x} \\\\ \mathbf{ \left( \frac{e^{10x} - e^{-10x} } {2} - \frac{e^{10x} + e^{-10x} } {2} \right)^{10} } &\mathbf{=}& \mathbf{ e^{-100 x} } \end{array}\)