+0  
 
+5
967
5
avatar

simplify: (((e10x - e-10x)/2)-((e10x + e-10x)/2)))10

need help!!!

 Mar 21, 2016
 #1
avatar
0
 Mar 21, 2016
edited by Guest  Mar 21, 2016
 #2
avatar
0

http://www.cymath.com/answer.php?q=simplify%20%5B((e%5E(10x)%20-%20e%5E- 10x)%20%20%2F%20%202)%20-%20((e%5E(10x)%20%2B%20e%5E-10x)%2F2)   %5D%5E10

 Mar 21, 2016
 #3
avatar+23254 
+5

Let  A = e10x  and let  B = e-10x.

 

Ignoring the outside exponent for a while,  the problem becomes [ (A - B) / 2 ] - [ (A + B) / 2 ]

   =  [A/2 - B/2] - [A/2 + B/2]  =  A/2 - B/2 - A/2 - B/2  =  - 2B/2  =  - B     which is     -e-10x

 

Bringing the exponent back into the problem:  (-e-10x)10  =  e-100x

because a negative number to an even exponent is positive, and you need to multiply the exponents.

 Mar 21, 2016
 #4
avatar+26400 
0

simplify: [ ((e10x - e-10x)/2) - ((e10x + e-10x)/2) ]10

need help!!!

 

\(\begin{array}{rcll} \left( \frac{e^{10x} - e^{-10x} } {2} - \frac{e^{10x} + e^{-10x} } {2} \right)^{10} &=& \left[ \frac{e^{10x} - e^{-10x} -( e^{10x} + e^{-10x} )} {2} \right]^{10} \\\\ &=& \left( \frac{e^{10x} - e^{-10x} - e^{10x} - e^{-10x} } {2} \right)^{10} \\\\ &=& \left( \frac{e^{10x}- e^{10x} - e^{-10x} - e^{-10x} } {2} \right)^{10} \\\\ &=& \left( \frac{ 0 - e^{-10x} - e^{-10x} } {2} \right)^{10} \\\\ &=& \left( \frac{ - e^{-10x} - e^{-10x} } {2} \right)^{10} \\\\ &=& \left( \frac{- 2\cdot e^{-10x} } {2} \right)^{10} \\\\ &=& \left( -e^{-10x} \right)^{10} \\\\ &=& \left[ (-1)\cdot e^{-10x} \right]^{10} \\\\ &=& (-1)^{10}\cdot e^{-10\cdot 10 x} \\\\ &=& 1\cdot e^{-10\cdot 10 x} \\\\ &=& 1\cdot e^{-100 x} \\\\ \mathbf{ \left( \frac{e^{10x} - e^{-10x} } {2} - \frac{e^{10x} + e^{-10x} } {2} \right)^{10} } &\mathbf{=}& \mathbf{ e^{-100 x} } \end{array}\)

 

laugh

 Mar 21, 2016
edited by heureka  Mar 21, 2016
edited by heureka  Mar 21, 2016
edited by heureka  Mar 21, 2016
 #5
avatar
0

heureka is a mathmatical boss! Thanks!

 Mar 22, 2016

1 Online Users

avatar