geno3141

avatar
Usernamegeno3141
Score23254
Membership
Stats
Questions 1
Answers 7089

 #4
avatar+23254 
+6

a2 = 1     a3 = 1     a4 = 0     a5 = 0     a6 = 34     a7 = 2

 

5/7  =  a2 / 2!  +  a3 / 3!  +  a4 / 4!  +  a5 / 5!  +  a6 / 6!  +  a7 / 7!

 

Start by writing each term with the common denominator 7!;

 

Left-hand side:  (5/7)·[ (6·5·4·3·2·1) / (7·6·5·4·3·2·1) ]  =  3600 / 7!

 

Right-hand side:  [ 7·6·5·4·3·a2  +   7·6·5·4·a3  +  7·6·5·a4  +  7·6·a5  +  7·a6  +  a7 ] / 7!

 

Cancel the denominators of 7!:    3600  =  7·6·5·4·3·a2  +   7·6·5·4·a3  +  7·6·5·a4  +  7·6·a5  +  7·a6  +  a7 

 

Now, start factoring the right-hand side:

     3600  =  7( 6·5·4·3·a2  +   6·5·4·a3  +  6·5·a4  +  6·a5  +  a6 )  +  a7 

     3600  =  7( 6(  5·4·3·a2  +   5·4·a3  +  5·a4  +  a5  ) +  a6 )  +  a7  

     3600  =  7( 6( 5( 4·3·a2  +  4·a3  +  a4 )  +  a5 )  +  a6 )  +  a7

     3600  =  7( 6( 5( 4( 3a2  +  a3 )  +  a4 )  +  a5 )  +  a6 )  +  a7

 

{More later, I have to go to supper ...}

 

Continuing:

 

3600 / 7  =  514 , Remainder = 2

So, 3600  =  514(7) + 2  =  7( 6( 5( 4( 3a2  +  a3 )  +  a4 )  +  a5 )  +  a6 )  +  a7 

Let  2 = a7  and subtract from both sides  --->     514(7)  =  7( 6( 5( 4( 3a2  +  a3 )  +  a4 )  +  a5 )  +  a6 ) 

Divide both sides by 7     --->     514  =  6( 5( 4( 3a2  +  a3 )  +  a4 )  +  a5 )  +  a6

 

514/6  =  85, Remainder = 4

85(6) + 4  =   6( 5( 4( 3a2  +  a3 )  +  a4 )  +  a5 )  +  a6

Let 4 = a6  and subtract from both sides  --->   85(6)  =   6( 5( 4( 3a2  +  a3 )  +  a4 )  +  a5 ) 

Divide both sides by 6     --->     85  =  5( 4( 3a2  +  a3 )  +  a4 )  +  a5

 

85/5  =  17, Remainder = 0

17(5) + 0  =     5( 4( 3a2  +  a3 )  +  a4 )  +  a5

Let 0 = a5 and subtract from both sides  --->   17(5)  =   5( 4( 3a2  +  a3 )  +  a4 )

Divide both sides by 5     --->     17  =   4( 3a2  +  a3 )  +  a4

 

17/4  =  4, Remainder = 1

4(4) + 1  =  4( 3a2  +  a3 )  +  a4

Let  1 = a4  and subtract from both sides  --->   4(4)  =  4( 3a2  +  a3 )

Divide both sides by 4     --->     4  =  3a2 + a3

 

This process can be continued one more step, but since a2 and a3 must be whole numbers

   --->   a3 = 1    

   --->   a2  =  1

 

In summary:  a7 = 2     a6 = 4     a5 = 0     4 = 1     a3 = 1     a2 = 1

 

Which is a wholy different answer than I had before!  But, they both work!

(I have no idea how I got a6 = 34....)

May 30, 2016
 #2
avatar+23254 
0

I agree with guest's answer of:  x = 5, y = 49, and z = 97; this answer checks!

My analysis is this (but, I have no idea whether or not it is a correct procedure or only a lucky procedure):

 

1/x - 1/(xy) - 1/(xyz)  =  19/97     with x < y < z

 

First find the sum of the left-side using the common denominator of xyz:

 

1(yz) / (xyz) - 1(z) / (xyz) - 1 / (xyz)  =  19 / 97   --->   (yz - z - 1) / (xyz)  =  19/97

 

The denominator of the left side has three factors; the denominator of the right side has only one factor, the prime number 97.  It needs two more factors. Since z is the largest of the three factors, claim that  = 97 and multiply the right hand side by xy/xy     --->     (yz - z - 1) / (xyz)  =  19xy / (97xy)

 

Claim that the numerators are equal:     --->     yz - z - 1  =  19xy

and claim that the denominators are equal:     --->     xyz  =  97xy     with z = 97.

 

Since z = 97     --->     yz - z - 1  =  19xy     --->     97y - 97 - 1  =  19xy

                                                                   --->     97y - 98  =  19xy

                                                                   --->     97y - 19xy  =  98

                                                                   --->     y(97 - 19x)  =  98

Since the factors of 98 are 2 and 49:         --->     y(97 - 19x)  =  2·49

So, if we are dealing with whole numbers,

either y = 2 or y = 49 (2 won't work           --->     49(97 - 19x)  =  2·49

because y > x  and x = 1 doesn't               --->          97 - 19x  =  2

work).                                                         --->                -19x  =  -95 

                                                                  --->                     x  =  5

May 30, 2016