We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 

hectictar

avatar
Usernamehectictar
Score8718
Stats
Questions 8
Answers 2764

 #2
avatar+8718 
+5

Here's another way...but it looks a bit longer than CPhill's!

 

First let's extend line  AB .

Then....

Draw a line perpendicular to  AB  that goes through point  C  .

Draw a line perpendicular to AB  that goes through point  E .

Draw a line parallel to  AB  (and perpendicular to the previous two lines) that goes through point  D .

 

Now let's label these new points of intersection W, X, Y, and Z , like the picture,

and put the information from the problem.

 

∠EAZ  =  ∠CBY  =  180° - 120°  =  60°

 

Since triangles AEZ and BCY are 30-60-90 triangles where the side across from the 90° angle is 2....

the side across from the 30° angle  =  2/2  =  1

the side across from the 60° angle  =  √3

 

And...

WD + DX  =  2 + 1 + 1             And  WD = DX , so we can substitute  WD  in for  DX .

WD + WD  =  2 + 1 + 1

2WD  =  4

WD  =  2

 

Now we can use the Pythagorean theorem to find  CX .

22 + CX2  =  42

4 + CX2  =  16             Subtract  4  from both sides of the equation.

CX2  =  12                   Take the positive square root of both sides.

CX  =  2√3

 

 

And.....

area of ABCDE   =   area of WXYZ  -  2(area of △EDW)  -  2(area of △AEZ)

                           =   (width)(length)  -  2(1/2)(base)(height)  -  2(1/2)(base)(height)

                           =   (2 + 2)(2√3 + √3)  -  2(1/2)(2)(2√3)  -  2(1/2)(1)(√3)

                           =   12√3  -  4√3  -  √3

                           =   7√3  square units

Aug 24, 2017