We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 

hectictar

avatar
Usernamehectictar
Score8718
Stats
Questions 8
Answers 2764

 #1
avatar+8718 
+2

We can use the law of cosines for these.

The law of cosines says:     c2  =  a2 + b2  -  2ab cos C  ,   where  C  is the angle opposite side  c .

 

In the first problem, we want to know the measure of the angle across from the side that is  4  cm.

 

42  =  32 + 52 - 2(3)(5)cos B

                                                    Simplify.

16  =  9 + 25 - 30 cos B

16  =  34 - 30 cos B

                                                    Subtract  34  from both sides.

-18  =  -30 cos B

                                                    Divide both sides by  -30 .

0.6  =  cos B

                                                    Take the inverse cosine of both sides.

acos( 0.6 )  =  B

 

      53.13°  ≈  B

 

 

For the second problem,  note that the smallest angle is opposite the smallest side, and the largest angle is opposite the largest side.   ( You can look at this to see why. )

 

So...the angle across from the side that is  5 cm  will be the smallest.

We can find the measure of this angle,  " A " , with the law of cosines again.

 

52  =  92 + 122  -  2(9)(12) cos A

 

25  =  225 - 216 cos A

 

200/216  =  cos A

 

acos(200/216)  =  A

 

           22.19º   ≈   A

 

And the largest angle is across from the  12 cm  side... " C " .

 

122  =  52 + 92  -  2(5)(9) cos C

 

144  =  106 - 90 cos C

 

38/ - 90  =  cos C

 

114.98º  ≈  C

Sep 7, 2017