+0  
 
0
39
2
avatar

what is the hypotenuse of a right angle triangle where the 2 sides are 15/16 and 15/16

Guest Sep 7, 2017
Sort: 

2+0 Answers

 #1
avatar+4480 
+2

The two legs must be  15/16  and  15/16  .

 

We can use the Pythagorean theorem to find the hypotenuse, which says....

 

(hypotenuse)2  =  (leg)2 + (other leg)2

                                                                     Plug in  15/16  for the legs.

(hypotenuse)2  =  (15/16)2 + (15/16)2

                                                                     Multiply out the exponents.

(hypotenuse)2  =  225 / 256 + 225/256

                                                                     Add the fractions.

(hypotenuse)2  =  450 / 256

                                                                     Take the positive square root of both sides.

hypotenuse  =  √( 450 / 256 )

 

hypotenuse  =  √450 / √256

 

hypotenuse  =  15√2 / 16      ≈  1.326

hectictar  Sep 7, 2017
 #2
avatar+1114 
+1

We could make this problem easier computationally once we realize that this triangle must be an isosceles right triangle. An isosceles triangle happens to be a 45-45-90 triangle, a triangle that happens to be apart of the "special right triangles" category.

 

In a 45-45-90 triangle, know the ratio of the side lengths are \(1:1:\sqrt{2}\). Now, let's solve for the hypotenuse.

 

\(\frac{\frac{15}{16}}{1}=\frac{\text{hypotenuse}}{\sqrt{2}}\) multiply by the square root of 2 on both sides.
\(\frac{15}{16}\sqrt{2}=\text{hypotenuse}\)  
   

 

As you'll notice, this is the exact answer that hecticar got. I ust used a different method.

TheXSquaredFactor  Sep 7, 2017

18 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details