We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 

hectictar

avatar
Usernamehectictar
Score8718
Stats
Questions 8
Answers 2764

 #1
avatar+8718 
+3

If     f( -x )  =  f(x)     then the function is even.

If     f( -x )  =  -f(x)    then the function is odd.

 

\(f(x) = \dfrac{5^x - 1}{5^x + 1}\)

                                       Plug in  -x  for  x

\(f(-x) = \dfrac{5^{(-x)} - 1}{5^{(-x)} + 1}\)

                                       Now we are looking for a way rewrite the right side so that  f(x)  appears.

                                       Let's rewrite  5(-x)  as  1 / 5x

\(f(-x) = \dfrac{\frac{1}{5^x} - 1}{\frac{1}{5^x} + 1}\)

                                             Multiply the numerator and denominator by  5x

\(f(-x) = \dfrac{\frac{1}{5^x} - 1}{\frac{1}{5^x} + 1}\cdot\dfrac{5^x}{5^x}\)

                                             Distribute the  5x  to the terms in the numerator and denominator

\(f(-x) = \dfrac{1 - 5^x}{1 + 5^x}\)

                                             Factor  -1  out of the numerator.

\(f(-x) = \dfrac{-1(-1 + 5^x)}{1 + 5^x}\)

                                             Addition can be done in any order so we can rearrange the terms like this..

\(f(-x) = \dfrac{-1( 5^x-1)}{ 5^x+1}\)

                                             Now we can write the  -1  beside the fraction like this...

\(f(-x) = -1\cdot\dfrac{ 5^x-1}{ 5^x+1}\)

                                             Finally, f(x)  has appeared!  \(f(x) = \dfrac{5^x - 1}{5^x + 1}\)   so we can substitute  f(x)  in for  \(\dfrac{5^x - 1}{5^x + 1}\)

\(f(-x) = -1\cdot f(x)\)

 

\(f(-x) = - f(x)\)

 

Remember that if     f( -x )  =  -f(x)    then the function is odd.

 

Since  f( -x )  =  -f(x)  , the function is odd.

Jul 27, 2019
 #2
avatar+8718 
+4

As Rom said, there is definitely no way to put 70 pictures on the board.

 

68 pictures is the maximum possible, and here is a way to do that:

 

 

However, if you can't rotate the pictures 90 degrees, then the maximum possible is

 

floor( 32 / 3 )  *  floor( 32 / 5 )   =   10 * 6   =   60

Jul 27, 2019
 #1
avatar+8718 
+3

x2 + 5x  <  6

                            Subtract  6  from both sides of the inequality.

x2 + 5x - 6  <  0

                            Let's find what values of  x  make  x2 + 5x - 6  equal  0

x2 + 5x - 6  =  0

                            Factor the left side. What two numbers add to  5  and multiply to  -6 ?   -1  and  +6

(x - 1)(x + 6) = 0

                            Set each factor equal to zero and solve for  x

x - 1  =  0     or     x + 6  =  0

 

 

x  =  1                   x  =  -6

 

   

Since a graph of   y  =  x2 + 5x - 6  is a parabola, we can be sure that

 

 

the values of  x  that would make  y < 0  fall in one of these two intervals:

 

either   the interval  (-6, 1)   or   the interval  (-∞, -6) U (1, ∞)

 

 

   

To determine which interval is the solution set, let's test a number in both of them.

 

   
0  is a number in the interval  (-6, 1)

 

 

If   x  =  0   then   y  =  (0)2 + 5(0) - 6  =  -6

 

And   -6 < 0   so we know  0  should be included.

 

 

   
2  is a number in the interval  (-∞, -6) U (1, ∞)

 

 

If   x  =  2   then   y  =  (2)2 + 5(2) - 6  =  8

 

And  2  > 0   so we know  2  should not be included.

 

 

   
So we can be sure that   x2 + 5x - 6  <  0   if and only if  x  is in the interval  (-6, 1)  

 

Check: https://www.desmos.com/calculator/ovccl7zguc

Jul 26, 2019