We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
125
3
avatar+35 

Find all numbers \(a\) for which the graph of \(y=x^2+a\) and the graph of \(y=ax\) intersect. Express your answer in interval notation, please!

 Jul 29, 2019
 #1
avatar+35 
+2

Help help I need help quick

anybody help!!!

hectictar cphill or EP?

 Jul 29, 2019
edited by AnimalLover2718  Jul 29, 2019
 #3
avatar+791 
+6

y = x^2 + a

y = ax

 

Set the y's equal

 

x^2 + a  =  ax          rearrange as

 

x^2 - ax + a = 0 

 

For this to have real solutions.......the discriminant must  be ≥  0

 

So

 

a^2  -  4a ≥  0

 

a ( a - 4) ≥  0

 

Setting each factor to 0  and solving for a  produces the following solutions  a = 0   and a = 4

 

So  we have the following possible intervals that  will produce solutions

 

(-inf, 0 ]  or  ( 0 , 4 )   or  [ 4, inf )

 

If a  is in the first interval, then a (a - 4) ≥ 0  so this interval produces a solution

If  a is in the second interval, then a(a - 4)  < 0.....so  no solutions are found here

If a  is in the third interval, then a (a - 4) ≥ 0 .....so this interval produces a solution

 

So....the solution intervals are  

 

(-inf, 0 ]  U [ 4, inf )

 

© from cphill 

 Jul 29, 2019

3 Online Users