+0

# Quadratic Inequality Question... HELP QUICK!!!

+1
166
3

Find all numbers \(a\) for which the graph of \(y=x^2+a\) and the graph of \(y=ax\) intersect. Express your answer in interval notation, please!

Jul 29, 2019

#1
+2

Help help I need help quick

anybody help!!!

hectictar cphill or EP?

Jul 29, 2019
edited by AnimalLover2718  Jul 29, 2019
#3
+6

y = x^2 + a

y = ax

Set the y's equal

x^2 + a  =  ax          rearrange as

x^2 - ax + a = 0

For this to have real solutions.......the discriminant must  be ≥  0

So

a^2  -  4a ≥  0

a ( a - 4) ≥  0

Setting each factor to 0  and solving for a  produces the following solutions  a = 0   and a = 4

So  we have the following possible intervals that  will produce solutions

(-inf, 0 ]  or  ( 0 , 4 )   or  [ 4, inf )

If a  is in the first interval, then a (a - 4) ≥ 0  so this interval produces a solution

If  a is in the second interval, then a(a - 4)  < 0.....so  no solutions are found here

If a  is in the third interval, then a (a - 4) ≥ 0 .....so this interval produces a solution

So....the solution intervals are

(-inf, 0 ]  U [ 4, inf )