hectictar

+3
399
4
+9142
hectictar  May 29, 2020
+5
1
1301
3
+9142
hectictar  Sep 9, 2018
+5
1
1257
2
+9142

Decomposing a Vector

hectictar  Apr 25, 2018
+12
1
1431
4
+9142

Melody's Birthday!!!

off-topic
hectictar  Apr 15, 2018
+5
1
1248
2
+9142
hectictar  Mar 21, 2018
+3
1
1863
3
+9142
hectictar  Sep 20, 2017
+2
1
1754
2
+9142

hectictar  Apr 25, 2017
+2
1
1718
4
+9142
hectictar  Mar 29, 2017
+3
1
1697
2
+9142
hectictar  Feb 22, 2017
#3
+9142
0
Sep 24, 2020
#1
+9142
+2

We are given:

A  =  (4, 1)

B  =  (6, 2)

C  =  (-1, 2)

And we can let:

P  =  (x, y)

By the Pythagorean Theorem/distance formula we can say:

PA2  =   (x - 4)2  +  (y - 1)2

PB2  =   (x - 6)2  +  (y - 2)2

PC2  =   (x + 1)2  +  (y - 2)2

Then....

PA2 + PB2 + PC2   =   (x - 4)2  +  (y - 1)2   +   (x - 6)2  +  (y - 2)2   +   (x + 1)2  +  (y - 2)2

Expand each term, then combine like terms to get:

PA2 + PB2 + PC2   =   3x2  -  18x  +  3y2  -  10y  +  62

(I used this to do that because I am lazy.)

Next we want to get the expression on the right side of the equation into the form:

3PQ2  +  k

which is:

3[ (x - something)2  +  (y - something)2 ] + k

To do that, we need to complete the squares of the x terms and the y terms.

PA2 + PB2 + PC2   =   3(x2  -  6x)  +  3(y2  -  $$\frac{10}{3}$$y)  +  62

PA2 + PB2 + PC2   =   3(x2  -  6x + 9 - 9)  +  3(y2  -  $$\frac{10}{3}$$y + $$\frac{25}{9}$$  -  $$\frac{25}{9}$$)  +  62

PA2 + PB2 + PC2   =   3( (x - 3)2 - 9)  +  3( (y - $$\frac53$$)2  -  $$\frac{25}{9}$$)  +  62

PA2 + PB2 + PC2   =   3(x - 3)2 - 27  +  3(y - $$\frac53$$)2  -  $$\frac{25}{3}$$  +  62

PA2 + PB2 + PC2   =   3(x - 3)2  +  3(y - $$\frac53$$)2  -  $$\frac{25}{3}$$  +  62 - 27

PA2 + PB2 + PC2   =   3[ (x - 3)2  +  (y - $$\frac53$$)2 ]   -  $$\frac{25}{3}$$  +  62 - 27

PA2 + PB2 + PC2   =   3[ (x - 3)2  +  (y - $$\frac53$$)2 ]   +   $$\frac{80}{3}$$

(Check)

Now it is in the desired form, and so we can pick out that    k   =   $$\frac{80}{3}$$

BTW, I came across this answer. It works out a bit more cleanly if  A  =  (4, -1).  Just wanted to mention this in case that is what you meant.

Sep 22, 2020