+0

# i'm lost

0
115
1

Can somone help me solve this? I am lost. Thanks!

Sep 25, 2020

#1
+9198
+1

The sum of the measures of all the arcs in a circle is  360°

So... looking at the circle in problem #9....we can make the following equation:

61°   +   (5x - 7)°   +   34°   +   (9x - 22)°   =   360°

Remove the degree sign from every term.

61   +   5x - 7   +   34   +   9x - 22   =   360

Combine like terms.

14x   +  66   =  360

Subtract  66  from both sides of the equation.

14x   =   294

Divide both sides of the equation by  14

x   =   21

Now that we know what  x  is, we can find the measures of all the arcs.

$$\begin{array}{ccccccc} m\stackrel{\large\frown}{GK}& =& (9x-22)^{\circ}& =&(9(21)-22)^\circ&=&167^\circ\\~\\ m\stackrel{\large\frown}{HJ}& =& (5x-7)^{\circ}& =&(5(21)-7)^\circ&=&98^\circ\\~\\ m\stackrel{\large\frown}{HGJ}& =& m\stackrel{\large\frown}{HG}+m\stackrel{\large\frown}{GK}+m\stackrel{\large\frown}{KJ} & =& 61^\circ+167^\circ+34^\circ&=&262^\circ\\~\\ m\stackrel{\large\frown}{GKJ}&=&m\stackrel{\large\frown}{GK}+m\stackrel{\large\frown}{KJ} &=&167^\circ+34^\circ&=&201^\circ \end{array}$$

Sep 25, 2020