heureka

avatar
Usernameheureka
Score26404
Membership
Stats
Questions 17
Answers 5678

 #3
avatar+26404 
+10

Integrate: dx/sqrt[1 - x^2], for all x from -1 to 1.

 

\(\small{ \begin{array}{lrcll} &\int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-x^2} } \ dx } \\ \hline \text{Substitution : } & x &=& \sin{(u)} \qquad \rightarrow \qquad u = \arcsin{(x)}\\ & \ dx &=& \cos{(u)}\ du \\ \hline &\int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-x^2} } \ dx } &=&\int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-\sin^2{(u)}} } \ dx } \\ & &=&\int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-\sin^2{(u)}} } \ dx } \qquad | \qquad 1-\sin^2{(u)} = \cos^2{(u)}\\ & &=&\int \limits_{-1}^{1} { \frac{1}{ \sqrt{\cos^2{(u)}} } \ dx } \\ & &=&\int \limits_{-1}^{1} { \frac{1}{ \cos{(u)} } \ dx } \\ & &=&\int \limits_{-1}^{1} { \frac{1}{ \cos{(u)} } \ dx } \qquad | \qquad dx = \cos{(u)}\ du\\ & &=&\int \limits_{-1}^{1} { \frac{1}{ \cos{(u)} }\cdot \cos{(u)}\ du } \\ & &=&\int \limits_{-1}^{1} { \ du } \\ & &=& [ u ]_{-1}^{1} \qquad | \qquad u = \arcsin{(x)} \\ & \mathbf{ \int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-x^2} } \ dx } } & \mathbf{=} & \mathbf{ [~ \arcsin{(x)} ~]_{-1}^{1} }\\ \hline & \int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-x^2} } \ dx } & = & [~ \arcsin{(x)} ~]_{-1}^{1} \\ & & = & [~ \arcsin{(1)}-\arcsin{(-1)} ~]\\ & & = & [~ \frac{\pi}{2} -\frac{-\pi}{2} ~]\\ & & = & [~ \frac{\pi}{2} +\frac{\pi}{2} ~]\\ & & = & \pi \\ & \mathbf{ \int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-x^2} } \ dx } } &\mathbf{=}& \mathbf{ \pi } \\ & \mathbf{ \int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-x^2} } \ dx } } &\mathbf{=}& \mathbf{ 3.14159265359 } \end{array} }\)

laugh

.
Feb 15, 2016
 #2
avatar+26404 
0

 

Siehe Bundeswettbewerb für Mathematik 2016

https://www.mathe-wettbewerbe.de/bwm/aufgaben

 

Die Antworten sind dann kurz nach dem Einsendeschluss 1. März 2016 auf der homepage des Bundeswettbewerbs Mathematik zu finden.

 

Die Lösung solltest du schon selber finden.

 

laugh

Feb 12, 2016
 #3
avatar+26404 
+5

1. Given that cschx=-9/40, find the exact value of coshx and tanh2x

 

\(\begin{array}{rcll} csch(x) & =& -\frac{9}{40} \\\\ cosh(x) & =& \frac{ \sqrt{1+csch^2(x)} } { csch(x) }\\ cosh(x) & =& \frac{ \sqrt{1+ (-\frac{9}{40})^2 } } { -\frac{9}{40} }\\ cosh(x) & =& -\frac{40}{9} \cdot \sqrt{1+ (-\frac{9}{40})^2 } \\ cosh(x) & =& -\frac{40}{9} \cdot \sqrt{1+ \frac{81}{1600}) } \\ cosh(x) & =& -\frac{40}{9} \cdot \sqrt{ \frac{1681}{1600}) } \\ cosh(x) & =& -\frac{40}{9} \cdot \frac{41}{40} \\\\ cosh(x) & =& -\frac{41}{9} \\ \hline \\ sinh(x) & =& \frac{ 1 } { csch(x) }\\ sinh(x) & =& \frac{ 1 } { -\frac{9}{40} }\\ sinh(x) & =& -\frac{40}{9}\\ \hline \\ \end{array} \\\)

\(\begin{array}{rcll} sinh (2x) &=& 2\cdot sinh (x)\cdot cosh (x)\\ cosh (2x) &=& cosh^2(x) + sinh^2(x) = 2 \cdot cosh^2(x) — 1 = 1 + 2\cdot sinh^2(x)\\\\ tanh (2x) &=& \frac{ sinh(2x) } { cosh(2x) } \\ tanh (2x) &=& \frac{ 2\cdot sinh (x)\cdot cosh (x) } { 1 + 2\cdot sinh^2(x) } \\ tanh (2x) &=& \frac{ 2\cdot (-\frac{40}{9})\cdot (-\frac{41}{9}) } { 1 + 2\cdot (-\frac{40}{9})^2 } \\ tanh (2x) &=& \frac{ 2\cdot (\frac{40\cdot 41}{9\cdot 9}) } { 1 + 2\cdot (\frac{40^2}{9^2}) } \\ tanh (2x) &=& \frac{ 2\cdot (\frac{40\cdot 41}{9^2}) } { \frac{9^2 +2\cdot 40^2}{9^2} } \\ tanh (2x) &=& \frac{ 2\cdot 40 \cdot 41 } { 9^2 +2\cdot 40^2 } \\\\ tanh (2x) &=& \frac{ 3280 } { 3281 }\\ \hline \\ \end{array}\)

 

2. Solve the equation

\(x=tanh(~ \ln{(~ \sqrt{6x}~) } ~) \quad \text{ for } 0 < x < 1 \)

\(\begin{array}{rcll} x &=& tanh(~ \ln{(~ \sqrt{6x}~) } ~) \qquad & | \qquad tanh^{-1}() \\ tanh^{-1}(x) &=& \ln{(~ \sqrt{6x}~) } \qquad & | \qquad tanh^{-1}(x) = \frac12\cdot \ln{(~\frac{1+x}{1-x}~)} \quad \text{ for } \quad -1<x<1\\ \frac12\cdot \ln{(~\frac{1+x}{1-x}~)} &=& \ln{(~ \sqrt{6x}~) } \\ \ln{(~[\frac{1+x}{1-x}]^\frac12~)} &=& \ln{(~ \sqrt{6x}~) } \\ \left[\frac{1+x}{1-x} \right]^\frac12 &=& \sqrt{6x}\\ \sqrt{\frac{1+x}{1-x} } &=& \sqrt{6x} \qquad & | \qquad (\text{square both sides})\\ \frac{1+x}{1-x} &=& 6x \\ 1+x &=& 6x\cdot ( 1-x ) \\ 1+x &=& 6x - 6x^2 \\ 6x^2 -6x + x + 1 &=& 0 \\ \end{array}\)

 

\(\boxed{~ \begin{array}{rcll} ax^2+bx+c &=& 0 \\ x &=& \dfrac{-b \pm \sqrt{b^2-4ac} }{2a} \end{array} ~}\)

 

\(\small{ \begin{array}{rcll} 6x^2 -5x + 1 &=& 0 \qquad & a = 6 \qquad b = -5 \qquad c = 1\\ x_{1,2} &=& \dfrac{-(-5) \pm \sqrt{(-5)^2-4\cdot 6 \cdot 1} }{2\cdot 6} \\ x_{1,2} &=& \dfrac{ 5 \pm \sqrt{25 - 24} }{ 12 } \\ x_{1,2} &=& \dfrac{ 5 \pm \sqrt{1} }{ 12 } \\ x_{1,2} &=& \dfrac{ 5 \pm 1 }{ 12 } \\\\ x_1 &=& \dfrac{ 5 + 1 }{ 12 } \\ x_1 &=& \dfrac{ 6 }{ 12 } \\ \mathbf{x_1} &\mathbf{=}& \mathbf{\dfrac{ 1 }{ 2 } }\\ \hline \\ x_2 &=& \dfrac{ 5 - 1 }{ 12 } \\ x_2 &=& \dfrac{ 4 }{ 12 } \\ \mathbf{x_2} &\mathbf{=}& \mathbf{\dfrac{ 1 }{ 3 } } \\ \hline \end{array} } \)

 

{nl} laugh

Feb 11, 2016
 #2
avatar+26404 
+5

Find the surface area of the figure. Round your answer to the nearest hundredth.

H; 18mm

R; 6mm

r; 3mm

 

\(\begin{array}{lrcll} \text{Area inside is a cylinder with radius r } & A_i &=& ( 2\pi r ) \cdot h \\ \text{Area outside is a cylinder with radius R } & A_o &=& ( 2\pi R ) \cdot h \\ \text{Area top is a ring } & A_{r_1} &=& \pi R^2 - \pi r^2 \\ \text{Area bottom is a ring } & A_{r_2} &=& \pi R^2 - \pi r^2 \\ \hline \\ \text{Area of the figure is the sum } \\ \end{array}\\ \begin{array}{lrcll} & A &=& A_i + A_o + A_{r_1} + A_{r_2} \\ & A &=& ( 2\pi r ) \cdot h + ( 2\pi R ) \cdot h + \pi R^2 - \pi r^2 + \pi R^2 - \pi r^2 \\ & A &=& ( 2\pi r ) \cdot h + ( 2\pi R ) \cdot h + 2\pi R^2 - 2\pi r^2 \\ & A &=& 2\pi ( r \cdot h + R \cdot h + R^2 - r^2 ) \\ & A &=& 2\pi [ h(r + R) + R^2 - r^2 ] \qquad & | \qquad R^2 - r^2 = ( R + r )(R - r)\\ & A &=& 2\pi [ h(r + R) + ( R + r )(R - r) ] \\ & A &=& 2\pi [ h(r + R) + ( r + R )(R - r) ] \\ & A &=& 2\pi (r + R)( h + R - r ) \\\\ & \mathbf{ A }& \mathbf{=} & \mathbf{ 2\cdot (r + R)\cdot ( h + R - r )\cdot \pi } \\ \end{array}\)

 

\(\begin{array}{lrcll} & A & = & 2\cdot (r + R)\cdot ( h + R - r )\cdot \pi \qquad r = 3\ mm \qquad R = 6\ mm \qquad h = 18\ mm \\ & A & = & 2\cdot (3 + 6)\cdot ( 18 + 6 - 3 )\cdot \pi \\ & A & = & 2\cdot 9\cdot 21 \cdot \pi \ mm^2 \\ & A & = & 378\cdot \pi \ mm^2 \\ & A & = & 1187.52202306 \ mm^2 \\ & \mathbf{A} & \mathbf{ = } & \mathbf{1187.52 \ mm^2 \qquad (\text{ rounded to the nearest hundredth}) }\\ \end{array}\)

 

or

\(\begin{array}{lrcll} & A & = & 1187.52202306 \ mm^2 \cdot \frac{1\ cm}{10\ mm} \cdot \frac{1\ cm}{10\ mm} \\ & A & = & \frac{1187.52202306}{100} \ cm^2 \\ & A & = & 11.8752202306 \ cm^2 \\ & A & = & 11.8752 \ cm^2 \\ \end{array}\)

 

 

laugh

Feb 11, 2016