+0  
 
0
541
4
avatar

Integrate: dx/sqrt[1 - x^2], for all x from -1 to 1. Please help and thanks.

Guest Feb 14, 2016

Best Answer 

 #3
avatar+20115 
+10

Integrate: dx/sqrt[1 - x^2], for all x from -1 to 1.

 

\(\small{ \begin{array}{lrcll} &\int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-x^2} } \ dx } \\ \hline \text{Substitution : } & x &=& \sin{(u)} \qquad \rightarrow \qquad u = \arcsin{(x)}\\ & \ dx &=& \cos{(u)}\ du \\ \hline &\int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-x^2} } \ dx } &=&\int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-\sin^2{(u)}} } \ dx } \\ & &=&\int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-\sin^2{(u)}} } \ dx } \qquad | \qquad 1-\sin^2{(u)} = \cos^2{(u)}\\ & &=&\int \limits_{-1}^{1} { \frac{1}{ \sqrt{\cos^2{(u)}} } \ dx } \\ & &=&\int \limits_{-1}^{1} { \frac{1}{ \cos{(u)} } \ dx } \\ & &=&\int \limits_{-1}^{1} { \frac{1}{ \cos{(u)} } \ dx } \qquad | \qquad dx = \cos{(u)}\ du\\ & &=&\int \limits_{-1}^{1} { \frac{1}{ \cos{(u)} }\cdot \cos{(u)}\ du } \\ & &=&\int \limits_{-1}^{1} { \ du } \\ & &=& [ u ]_{-1}^{1} \qquad | \qquad u = \arcsin{(x)} \\ & \mathbf{ \int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-x^2} } \ dx } } & \mathbf{=} & \mathbf{ [~ \arcsin{(x)} ~]_{-1}^{1} }\\ \hline & \int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-x^2} } \ dx } & = & [~ \arcsin{(x)} ~]_{-1}^{1} \\ & & = & [~ \arcsin{(1)}-\arcsin{(-1)} ~]\\ & & = & [~ \frac{\pi}{2} -\frac{-\pi}{2} ~]\\ & & = & [~ \frac{\pi}{2} +\frac{\pi}{2} ~]\\ & & = & \pi \\ & \mathbf{ \int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-x^2} } \ dx } } &\mathbf{=}& \mathbf{ \pi } \\ & \mathbf{ \int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-x^2} } \ dx } } &\mathbf{=}& \mathbf{ 3.14159265359 } \end{array} }\)

laugh

heureka  Feb 15, 2016
 #1
avatar
+5

Compute the definite integral:

integral_(-1)^1 1/sqrt(1-x^2) dx

1/sqrt(1-x^2) has discontinuities at x = -1 and x = 1, which both produce improper bounds:

= integral_(-1)^1 1/sqrt(1-x^2) dx

Since 1/sqrt(1-x^2) is an even function and the interval [-1, 1] is symmetric about 0, integral_(-1)^1 1/sqrt(1-x^2) dx = 2 integral_0^1 1/sqrt(1-x^2) dx. Applying this identity will reduce the number of improper endpoints on the integration domain:

= 2 integral_0^1 1/sqrt(1-x^2) dx

Apply the fundamental theorem of calculus.

The antiderivative of 1/sqrt(1-x^2) is sin^(-1)(x):

= lim_(b->1^-) 2 sin^(-1)(x)|_0^b

Evaluate the antiderivative at the limits and subtract.

lim_(b->1^-) 2 sin^(-1)(x)|_0^b = (lim_(b->1^-) 2 sin^(-1)(b))-2 sin^(-1)(0) = (lim_(b->1^-) 2 sin^(-1)(b))-0:

= (lim_(b->1^-) 2 sin^(-1)(b))

lim_(b->1^-) 2 sin^(-1)(b) = pi:

Answer: |= pi

Guest Feb 14, 2016
 #2
avatar+90968 
0
CPhill  Feb 14, 2016
edited by CPhill  Feb 14, 2016
 #3
avatar+20115 
+10
Best Answer

Integrate: dx/sqrt[1 - x^2], for all x from -1 to 1.

 

\(\small{ \begin{array}{lrcll} &\int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-x^2} } \ dx } \\ \hline \text{Substitution : } & x &=& \sin{(u)} \qquad \rightarrow \qquad u = \arcsin{(x)}\\ & \ dx &=& \cos{(u)}\ du \\ \hline &\int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-x^2} } \ dx } &=&\int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-\sin^2{(u)}} } \ dx } \\ & &=&\int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-\sin^2{(u)}} } \ dx } \qquad | \qquad 1-\sin^2{(u)} = \cos^2{(u)}\\ & &=&\int \limits_{-1}^{1} { \frac{1}{ \sqrt{\cos^2{(u)}} } \ dx } \\ & &=&\int \limits_{-1}^{1} { \frac{1}{ \cos{(u)} } \ dx } \\ & &=&\int \limits_{-1}^{1} { \frac{1}{ \cos{(u)} } \ dx } \qquad | \qquad dx = \cos{(u)}\ du\\ & &=&\int \limits_{-1}^{1} { \frac{1}{ \cos{(u)} }\cdot \cos{(u)}\ du } \\ & &=&\int \limits_{-1}^{1} { \ du } \\ & &=& [ u ]_{-1}^{1} \qquad | \qquad u = \arcsin{(x)} \\ & \mathbf{ \int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-x^2} } \ dx } } & \mathbf{=} & \mathbf{ [~ \arcsin{(x)} ~]_{-1}^{1} }\\ \hline & \int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-x^2} } \ dx } & = & [~ \arcsin{(x)} ~]_{-1}^{1} \\ & & = & [~ \arcsin{(1)}-\arcsin{(-1)} ~]\\ & & = & [~ \frac{\pi}{2} -\frac{-\pi}{2} ~]\\ & & = & [~ \frac{\pi}{2} +\frac{\pi}{2} ~]\\ & & = & \pi \\ & \mathbf{ \int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-x^2} } \ dx } } &\mathbf{=}& \mathbf{ \pi } \\ & \mathbf{ \int \limits_{-1}^{1} { \frac{1}{ \sqrt{1-x^2} } \ dx } } &\mathbf{=}& \mathbf{ 3.14159265359 } \end{array} }\)

laugh

heureka  Feb 15, 2016
 #4
avatar+93866 
+5

Integrate: dx/sqrt[1 - x^2], for all x from -1 to 1. Please help and thanks.

 

My answer is the same as Heureka's, I just like to start it a little different.

 

\(\int_{-1}^1 \frac{1}{\sqrt{1 - x^2}}\;dx\)

 

I like to start with this little triangle  it wasn't meant to be that big.   surprise

 

\(cos\theta=\sqrt{1-x^2}\\~\\ sin\theta=x\\ x=\sin\theta\\ \frac{dx}{d\theta}=cos\theta\\ dx=cos\theta\;d\theta\\~\\ When\;\;x=1,\;\;\;\;sin\theta =1\;\;\;\;\;\;\;\;\rightarrow\;\;\;\theta=\frac{\pi}{2}\\ When\;\;x=-1,\;\;\;\;sin\theta =-1\;\;\;\;\rightarrow\;\;\;\theta=\frac{-\pi}{2}\\ SO\\ \)

 

\(\displaystyle \int_{-1}^1 \frac{1}{\sqrt{1 - x^2}}\;dx\\~\\ =\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\;\;\; \frac{1}{cos\theta}\;cos\theta\;d\theta\\~\\ =\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\;\;\; 1\;d\theta\\~\\ =\left[\theta\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\\~\\ =\frac{\pi}{2}-\;-\frac{\pi}{2}\\~\\ =\pi\)

Melody  Feb 17, 2016

8 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.