heureka

avatar
Usernameheureka
Score26367
Membership
Stats
Questions 17
Answers 5678

 #1
avatar+26367 
+1

Given that x satisfies \(x^2 - 5x + 1 = 0\),
find the value of \(x^4 +\dfrac{1}{ x^4 }\).

 

\(\begin{array}{|rcll|} \hline \mathbf{x^2 - 5x + 1} &=& \mathbf{0} \\\\ x_{1,2} &=& \dfrac{5\pm\sqrt{25-4}}{2} \\ x_{1,2} &=& \dfrac{5\pm\sqrt{21}}{2} \\ \hline x_{1,2}^2 &=& \left( \dfrac{5\pm\sqrt{21}}{2} \right)^2 \\ x_{1,2}^2 &=& \dfrac{123\pm 5\sqrt{21}}{2}\\ \hline x_{1,2}^4 &=& \left( \dfrac{123\pm 5\sqrt{21}}{2} \right)^2 \\ x_{1,2}^4 &=& \dfrac{527\pm 115\sqrt{21}}{2} \\ \hline \end{array}\)

 

\(x_1:\)

\(\begin{array}{|rcll|} \hline x_1^4 + \dfrac{1}{x_1^4} &=& \dfrac{527+115\sqrt{21}}{2} +\dfrac{2}{527+115\sqrt{21}} \\\\ x_1^4 + \dfrac{1}{x_1^4} &=& \dfrac{527+115\sqrt{21}}{2} +\dfrac{2}{(527+115\sqrt{21})}*\dfrac{(527-115\sqrt{21})}{(527-115\sqrt{21})} \\\\ x_1^4 + \dfrac{1}{x_1^4} &=& \dfrac{527+115\sqrt{21}}{2} +\dfrac{2(527-115\sqrt{21})}{4} \\\\ x_1^4 + \dfrac{1}{x_1^4} &=& \dfrac{527+115\sqrt{21}}{2} +\dfrac{(527-115\sqrt{21})}{2} \\\\ x_1^4 + \dfrac{1}{x_1^4} &=& \dfrac{527+115\sqrt{21}+527-115\sqrt{21}}{2} \\\\ x_1^4 + \dfrac{1}{x_1^4} &=& \dfrac{2*527}{2} \\\\ x_1^4 + \dfrac{1}{x_1^4} &=& 527 \\ \hline \end{array}\)

 

\(x_2:\)

\(\begin{array}{|rcll|} \hline x_2^4 + \dfrac{1}{x_2^4} &=& \dfrac{527-115\sqrt{21}}{2} +\dfrac{2}{527-115\sqrt{21}} \\\\ x_2^4 + \dfrac{1}{x_2^4} &=& \dfrac{527-115\sqrt{21}}{2} +\dfrac{2}{(527-115\sqrt{21})}*\dfrac{(527+115\sqrt{21})}{(527+115\sqrt{21})} \\\\ x_2^4 + \dfrac{1}{x_2^4} &=& \dfrac{527-115\sqrt{21}}{2} +\dfrac{2(527+115\sqrt{21})}{4} \\\\ x_2^4 + \dfrac{1}{x_2^4} &=& \dfrac{527-115\sqrt{21}}{2} +\dfrac{(527+115\sqrt{21})}{2} \\\\ x_2^4 + \dfrac{1}{x_2^4} &=& \dfrac{527-115\sqrt{21}+527+115\sqrt{21}}{2} \\\\ x_2^4 + \dfrac{1}{x_2^4} &=& \dfrac{2*527}{2} \\\\ x_2^4 + \dfrac{1}{x_2^4} &=& 527 \\ \hline \end{array}\)

 

\(x^4 +\dfrac{1}{ x^4 } =527\)

 

laugh

Jul 24, 2021
 #2
avatar+26367 
+1

As shown in the diagram,\(~BD/DC=2,~CE/EA=3\),  and \(AF/FB=4\).
Find \([DEF]/[ABC]\).

 

\(\begin{array}{rcll} \text{ Let } BC&=&a\\ \text{ Let } BD&=&\frac{2}{3}a \\ \text{ Let } DC&=&\frac{1}{3}a \\\\ \text{ Let } CA&=&b \\ \text{ Let } CE&=&\frac{3}{4}b \\ \text{ Let } EA&=&\frac{1}{4}b \\\\ \text{ Let } AB&=&c \\ \text{ Let } AF&=&\frac{4}{5}c \\ \text{ Let } FB&=&\frac{1}{5}c \\ \end{array}\)

 

\(\begin{array}{rcll} \text{ Let } \angle CAB&=& A\\ \text{ Let } \angle ABC&=& B\\ \text{ Let } \angle BCA&=& C\\ \end{array}\)

 

\(\begin{array}{|rcll|} \hline 2*[ABC] &=& bc\sin(A) \\\\ 2*[AFE] &=& \frac{1}{4}b*\frac{4}{5}c \sin(A) \\ 2*[AFE] &=& \frac{1}{5}bc \sin(A) \\ 2*5*[AFE] &=& bc \sin(A) \\ \hline bc\sin(A) = 2*[ABC] &=& 2*5*[AFE] \\ 2*[ABC] &=& 2*5*[AFE] \\ [ABC] &=& 5*[AFE] \\ \mathbf{[AFE]} &=& \mathbf{\frac{1}{5}[ABC]} \\ \hline \end{array}\\ \begin{array}{|rcll|} \hline 2*[ABC] &=& ca\sin(B) \\\\ 2*[FBD] &=& \frac{1}{5}c*\frac{2}{3}a \sin(B) \\ 2*[FBD] &=& \frac{2}{15}ca \sin(B) \\ 2*\frac{15}{2}*[FBD] &=& ca \sin(B) \\ \hline ca \sin(B) = 2*[ABC]&=&2*\frac{15}{2}[FBD] \\ 2*[ABC]&=&2*\frac{15}{2}[FBD] \\ [ABC]&=&\frac{15}{2}[FBD] \\ \mathbf{[FBD]} &=& \mathbf{\frac{2}{15}[ABC]} \\ \hline \end{array}\\ \begin{array}{|rcll|} \hline 2*[ABC] &=& ab\sin(C) \\\\ 2*[EDC] &=& \frac{1}{3}a*\frac{3}{4}b \sin(C) \\ 2*[EDC] &=& \frac{1}{4}ab \sin(C) \\ 2*4*[EDC] &=& ab \sin(C) \\ \hline ab \sin(C) = 2*[ABC] &=& 2*4*[EDC] \\ 2*[ABC] &=& 2*4*[EDC] \\ [ABC] &=& 4*[EDC] \\ \mathbf{[EDC]} &=& \mathbf{\frac{1}{4}[ABC]} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline [DEF] + [AFE]+[FBD]+[EDC] &=& [ABC] \\ [DEF] + \frac{1}{5}[ABC]+\frac{2}{15}[ABC]+\frac{1}{4}[ABC] &=& [ABC] \\ [DEF] + [ABC] \left(\frac{1}{5}+\frac{2}{15}+\frac{1}{4} \right) &=& [ABC] \\ [DEF] + \frac{7}{12}[ABC] &=& [ABC] \\ [DEF] &=& [ABC]- \frac{7}{12}[ABC] \\ [DEF] &=& [ABC] \left(1- \frac{7}{12} \right) \\ [DEF] &=& \frac{5}{12}[ABC] \\ \mathbf{\frac{[DEF]}{[ABC]}} &=& \mathbf{\frac{5}{12}} \\ \hline \end{array}\)

 

laugh

Jul 23, 2021
 #2
avatar+26367 
+2

(b)

For some positive integer \(n\) the expansion of \((1 + x)^n\)
has three consecutive coefficients \(a,~b,~c\) that satisfy
\(a:b:c = 1:7:35\).
What must \(n\) be?

 

\(\text{Let $a=\dbinom{n}{k - 1}$ } \\ \text{Let $b=\dbinom{n}{k}$ } \\ \text{Let $c=\dbinom{n}{k+1}$ }\)

 

\(\begin{array}{|rcll|} \hline \dfrac{b}{a} = \dfrac{7}{1} &=& \dfrac{\dbinom{n}{k}}{\dbinom{n}{k - 1}} \\\\ \dfrac{7}{1} &=& \dfrac{\dbinom{n}{k}}{\dbinom{n}{k - 1}} \\\\ \dfrac{7}{1} &=& \dfrac{n-k+1}{k} \\\\ 7k &=& n-k+1 \\ 8k &=& n+1 \\ \mathbf{n} &=& \mathbf{8k-1} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \dbinom{n}{k + 1} &=& \dfrac{n!}{(k+1)!\Big( n-(k+1)\Big)!} \\\\ &=& \dfrac{n!}{(k+1)!\Big( n-k-1)\Big)!} \\\\ && \boxed{ (k+1)!=k!(k+1)} \\\\ &=& \dfrac{n!}{k!(k+1)( n-k-1)!} \\\\ && \boxed{ ( n-k-1)!(n-k)=(n-k)! \\ ( n-k-1)!=\dfrac{(n-k)!}{n-k} } \\\\ &=& \dfrac{n!*(n-k)}{k!(k+1)(n-k)!} \\\\ &=& \dfrac{n!}{k!(n-k)! } *\dfrac{(n-k)}{(k+1)} \\\\ && \boxed{ \dbinom{n}{k}=\dfrac{n!}{k!(n-k)! } } \\\\ &=& \dbinom{n}{k} *\dfrac{(n-k)}{(k+1)} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \dfrac{c}{b} = \dfrac{35}{7} &=& \dfrac{\dbinom{n}{k+1}}{\dbinom{n}{k}} \\\\ \dfrac{35}{7} &=& \dfrac{\dbinom{n}{k} *\dfrac{(n-k)}{(k+1)}}{\dbinom{n}{k}} \\\\ \dfrac{35}{7} &=&\dfrac{(n-k)}{(k+1)} \\\\ 35(k+1) &=&7(n-k) \\ 42k &=& 7n-35 \\ \mathbf{k} &=& \mathbf{ \dfrac{7n-35}{42}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline n &=& 8k-1 \quad | \quad \mathbf{k=\dfrac{7n-35}{42}} \\\\ n &=& 8\left(\dfrac{7n-35}{42}\right)-1 \\\\ n &=& \dfrac{4(7n-35)}{21}-1 \\\\ n &=& \dfrac{4(7n-35)-21}{21} \\\\ 21n &=&4(7n-35)-21\\ 21n &=&28n-140-21\\ 7n &=& 161 \quad | \quad :7 \\ \mathbf{n} &=& \mathbf{23} \\ \hline k &=& \dfrac{7n-35}{42} \\\\ k &=& \dfrac{7*23-35}{42} \\\\ \mathbf{k} &=& \mathbf{3} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline a:b:c =\dbinom{n}{k - 1}:\dbinom{n}{k}:\dbinom{n}{k + 1} &=& 1:7:35 \\\\ \dbinom{n}{k - 1}:\dbinom{n}{k}:\dbinom{n}{k + 1} &=& 1:7:35 \\\\ \dbinom{23}{3 - 1}:\dbinom{23}{3}:\dbinom{23}{3 + 1} &=& 1:7:35 \\\\ \dbinom{23}{2}:\dbinom{23}{3}:\dbinom{23}{4} &=& 1:7:35 \\\\ 253:1771:8855 &=& 1:7:35 \\ \hline \end{array}\)

 

laugh

Jul 21, 2021