Suppose we have \(PQ = 6\), \(QR = 7\), and \(PR = 9\), as in the picture below:
Find the length of the median from \(R\) to \(\overline{PQ}\).
I won't directly solve this problem, but hint: try using sin on triangle RPM. You don't need theta, just pull up a chart of all sin values and compare the results. After that, use theta to calculate side d.
PR = a = 9 QR = b = 7 PQ = c = 6 RM = d = ?
d = 1/2[sqrt(2*a2 + 2*b2 - c2)]
d = √224 / 2 ≈ 7.483
Suppose we have \(PQ=6\), \(QR=7\), and \(PR=9\), as in the picture below:
Find the length of the median from \(R\) to \(\overline{PQ}\).
cos Rule:
\(\begin{array}{|rcll|} \hline 9^2&=&(2*3)^2+7^2-2*2*3*7*\cos(Q) \\ 9^2&=&6^2+7^2-2*2*3*7*\cos(Q) \\ 2*2*3*7*\cos(Q) &=& 6^2+7^2-9^2 \\ 2*2*3*7*\cos(Q) &=& 4 \quad | \quad :2 \\ 2*3*7*\cos(Q) &=& 2 \qquad (1) \\ \hline \end{array}\)
cos Rule:
\(\begin{array}{|rcll|} \hline d^2&=&3^2+7^2-2*3*7*\cos(Q) \\ 2*3*7*\cos(Q) &=& 3^2+7^2-d^2 \\ 2*3*7*\cos(Q) &=& 58-d^2 \qquad (2) \\ \hline \end{array}\\ \begin{array}{|lrcll|} \hline (1)=(2):& 2 &=& 58-d^2 \\ & d^2&=& 58-2 \\ & d^2&=& 56 \\ & d^2&=& 4*14 \\ & \mathbf{d}&=&\mathbf{ 2\sqrt{14} } \\ \hline \end{array}\)