Let a, b, c be the roots of x3−x+4=0.
Compute (a2−1)(b2−1)(c2−1).
By Vieta:
x3+0∗x2⏟0=−(a+b+c)−1∗x⏟−1=ab+ac+bc+4⏟4=−abcabc=−4ab+ac+bc=−1a+b+c=0
a+b+c=0(a+b+c)2=02a2+b2+c2+2∗(ab+ac+bc)=0a2+b2+c2+2∗(−1)=0a2+b2+c2=2ab+ac+bc=−1(ab+ac+bc)2=(−1)2a2b2+a2c2+b2c2+2∗(a2bc+ab2c+abc2)=1a2b2+a2c2+b2c2+2∗abc∗(a+b+c)=1a2b2+a2c2+b2c2+2∗abc∗(0)=1a2b2+a2c2+b2c2=1
(a2−1)(b2−1)(c2−1)=a2b2c2−(a2b2+a2c2+b2c2)+a2+b2+c2−1=(−4)2−(1)+2−1=16−2+2=16
(a2−1)(b2−1)(c2−1)=16