this is how I do it..but get stuck..
First I swopped the two terms around
\({SinxTanx \over{Tanx-1}}+{Cosx \over{1-Tanx}}\)
\({SinxTanx \over{Tanx-1}}-{Cosx \over{Tanx-1}}\)
\({{(Sinx){Sinx \over{Cosx}}} \over{sinx \over{Cosx}}-1}-{Cosx \over{Sinx \over{Cosx}}}-1\)
\({{Sin^2x \over{cosx}} \over{Sinx \over{Cosx}}-1}-{Cosx \over{Sinx \over{Cosx}}}-1\)
\({{Sin^2x \over{Cosx}}*{Cosx \over{Sinx}}-1}-({{Cosx}*{Cosx \over{Sinx}}})-1\)
\((Sinx-1)-({Cos^2x \over{Sinx}})+1\)
\((Sinx)-({Cos^2x \over{Sinx}})\)
And I'm stuck...