Subtract 12 from each side
will get \(\sin \left(2x\right)+2\left(2\cos \left(x\right)-3\sin \left(x\right)\right)-12=0\)
Use the identity \(\sin \left(2x\right)=2\cos \left(x\right)\sin \left(x\right)\)
\(\left(2\cos \left(x\right)-3\sin \left(x\right)\right)2+2\cos \left(x\right)\sin \left(x\right)-12=0\)
\(2\left(2\cos \left(x\right)+\cos \left(x\right)\sin \left(x\right)-3\sin \left(x\right)-6\right)\)
\(=2\left(\sin \left(x\right)+2\right)\left(\cos \left(x\right)-3\right)\)
solving each part equivalent to 0
\(\sin \left(x\right)+2=0\:\:\:\mathrm{or}\:\:\:\cos \left(x\right)-3=0\)
sinx cannot be -2
and cos x cannot be 3
hence , no answer in R