approximate the solutions (to three decimal places) of the given equation inthe interval (-pi/2, pi/2) 6 sin 2x − 8 cos x + 9 sin x = 6
a. x = 0.398
b. x = 0.094
c. x = 0.139
d. x = 0.730
e. x = 1.336
Well , Melody's answer is correct if you don't need to proove it
but if you need proof
\(\mathrm{Subtract\:}6\mathrm{\:from\:both\:sides} \)
\(6\sin \left(2x\right)-8\cos \left(x\right)+9\sin \left(x\right)-6=0\)
\(Use \: \sin \left(2x\right)=2\cos \left(x\right)\sin \left(x\right)\)
\(-6-8\cos \left(x\right)+9\sin \left(x\right)+2\cdot \:6\cos \left(x\right)\sin \left(x\right)=0\)
factoring gives us \(\left(4\cos \left(x\right)+3\right)\left(3\sin \left(x\right)-2\right)=0\)
so either the first term or the second equivalent to 0 , we will check them both
\(4\cos \left(x\right)+3=0,\:\frac{-\pi }{2}\le \:x\le \frac{\pi }{2}\)
there are no solution in this range for x , you can check yourself
\(\sin \left(x\right)=\frac{2}{3}\)
in the range \(\frac{-\pi }{2}\le \:x\le \frac{\pi }{2}\)
there is only one solution for sinx= 2/3 in the range -pi/2 to pi/2
it is
d. x = 0.730
Well,
you could just substitute each of those values into the left hand side and see which one gives and answer closest to 6.
Well , Melody's answer is correct if you don't need to proove it
but if you need proof
\(\mathrm{Subtract\:}6\mathrm{\:from\:both\:sides} \)
\(6\sin \left(2x\right)-8\cos \left(x\right)+9\sin \left(x\right)-6=0\)
\(Use \: \sin \left(2x\right)=2\cos \left(x\right)\sin \left(x\right)\)
\(-6-8\cos \left(x\right)+9\sin \left(x\right)+2\cdot \:6\cos \left(x\right)\sin \left(x\right)=0\)
factoring gives us \(\left(4\cos \left(x\right)+3\right)\left(3\sin \left(x\right)-2\right)=0\)
so either the first term or the second equivalent to 0 , we will check them both
\(4\cos \left(x\right)+3=0,\:\frac{-\pi }{2}\le \:x\le \frac{\pi }{2}\)
there are no solution in this range for x , you can check yourself
\(\sin \left(x\right)=\frac{2}{3}\)
in the range \(\frac{-\pi }{2}\le \:x\le \frac{\pi }{2}\)
there is only one solution for sinx= 2/3 in the range -pi/2 to pi/2
it is
d. x = 0.730