$${\mathtt{A}} = {{\mathtt{r}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{\pi}}$$
$${\mathtt{Z}} = {\frac{{\mathtt{K}}{\mathtt{\,\times\,}}{\mathtt{t}}{\mathtt{\,\times\,}}{\mathtt{p}}}{\left({\mathtt{360}}{\mathtt{\,\times\,}}{\mathtt{100}}\right)}}$$ => $${\mathtt{K}} = {\frac{\left({\mathtt{Z}}{\mathtt{\,\times\,}}{\mathtt{360}}{\mathtt{\,\times\,}}{\mathtt{100}}\right)}{\left({\mathtt{t}}{\mathtt{\,\times\,}}{\mathtt{p}}\right)}}$$
$${\frac{\left({\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{360}}{\mathtt{\,\times\,}}{\mathtt{100}}\right)}{\left({\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{6}}\right)}} = {\mathtt{6\,000}}$$
$${{\mathtt{5}}}^{{\mathtt{2}}} = {\mathtt{25}}$$ $${{\mathtt{0.5}}}^{{\mathtt{4}}} = {\frac{{\mathtt{1}}}{{\mathtt{16}}}} = {\mathtt{0.062\: \!5}}$$
$${{\mathtt{3}}}^{{\mathtt{5}}} = {\mathtt{243}}$$