Hallo Anonymous,
hier noch einige Formeln und deren Zusammenfassungen :
Oberfläche Pyramide: $${\mathtt{O}} = {{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,\times\,}}{\mathtt{ha}}$$ ; $${\mathtt{ha}} = {\sqrt{{{\mathtt{h}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\left({\frac{{\mathtt{a}}}{{\mathtt{2}}}}\right)}^{{\mathtt{2}}}}}$$
neu entstandene Dreiecksfläche: $${\mathtt{AD}} = {\mathtt{0.5}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,\times\,}}{\mathtt{h}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{2}}}}$$
Oberfläche der halben diagonal geschnittenen Pyramide:
$${\mathtt{OhP}} = {\mathtt{0.5}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,\times\,}}\left({\mathtt{a}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{{\mathtt{h}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\left({\frac{{\mathtt{a}}}{{\mathtt{2}}}}\right)}^{{\mathtt{2}}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{h}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{2}}}}\right)$$
Dazu wird sich sicher noch jemand äußern !
Gruß radix
!