$${\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,-\,}}{\mathtt{6}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,-\,}}{\mathtt{7}} = {\mathtt{37}}$$
$${f}{\left({\mathtt{x}}\right)} = {\mathtt{4}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{2}}{\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{1}}\right)\right)}$$
$${\mathtt{r}} = {\sqrt{{\frac{{\mathtt{625}}}{{\mathtt{\pi}}}}}} \Rightarrow {\mathtt{r}} = {\mathtt{14.104\: \!739\: \!588\: \!693\: \!906}}$$
$${\mathtt{240\,300}}{\mathtt{\,\times\,}}{\mathtt{8.322\: \!9}}\% = {\mathtt{19\,999.928\: \!7}}$$