Hallo Anonymous,
hast du das so gemeint ?
$${\frac{{\frac{{\mathtt{300}}{\mathtt{\,\times\,}}{\mathtt{600}}}{{\mathtt{9}}}}}{{\mathtt{3}}}} = {\mathtt{6\,666.666\: \!666\: \!666\: \!666\: \!666\: \!7}}$$
oder so ?
$${\frac{{\mathtt{300}}{\mathtt{\,\times\,}}{\mathtt{600}}}{\left({\mathtt{9}}{\mathtt{\,\times\,}}{\mathtt{3}}\right)}} = {\mathtt{6\,666.666\: \!666\: \!666\: \!666\: \!666\: \!7}}$$
oder so?
$${\frac{{\frac{\left({\mathtt{300}}{\mathtt{\,\times\,}}{\mathtt{600}}\right)}{{\mathtt{9}}}}}{{\mathtt{3}}}} = {\mathtt{6\,666.666\: \!666\: \!666\: \!666\: \!666\: \!7}}$$
Ohne Rechner: $${\frac{{\mathtt{300}}{\mathtt{\,\times\,}}{\mathtt{600}}}{\left({\mathtt{9}}{\mathtt{\,\times\,}}{\mathtt{3}}\right)}} = {\frac{{\mathtt{100}}{\mathtt{\,\times\,}}{\mathtt{200}}}{{\mathtt{3}}}} = {\frac{{\mathtt{20\,000}}}{{\mathtt{3}}}} = {\mathtt{6\,666.666\: \!67}}$$
Das Erbebnis ist immer das gleiche , da es sich um eine reine Punktrechnung handelt. ( * und : )
Gruß radix
!