$$log_4(x)=\sqrt{log_4(x)}$$
$$(log_4(x))^2 = log_4(x)$$
$$(log_4(x))^2-log_4(x) = 0$$
$$log_4(x)(log_4(x)-1) = 0$$
$$log_4(x) = 0$$ or $$log_4(x) = 1$$
$$x = 1$$ or $$x = 4^1 = 4$$
Sorry for the double solution, but I wanted a variant which also gave $$x=1$$
Reinout 