Hi there :D!
Can someone please help me figure out this equation?
Thanks in advance!
I. n−1∑m=0b(n−1∏j=m+1a)=bn−1∑m=0(n−1∏j=m+1a) because: b∗(p1)+b∗(p2)+b∗(p3)+...=b∗(p1+p2+p3+...) $$
\\\small{\text{ II. $\prod \limits_{j=m+1}^{n-1}(a) \right)=a^{(n-1)-(m+1)+1} $\quad because: $\ \prod \limits_{from}^{to}(a) \right)= a^{\text{to}-\text{from}+1} \quad $ example: $\ \prod \limits_{4}^{5}(a) \right)= a*a=a^{5-4+1}=a^2$ }}$\\$ \small{\text{ $\prod \limits_{j=m+1}^{n-1}(a) \right)=a^{(n-1)-m}$ }}$\\\\$
\small{\text{ III. $ b \sum\limits_{m=0}^{n-1}a^{(n-1-m)} \right) =b \sum\limits_{m=0}^{n-1}a^{(m)} \quad $ because: $a^{n-1}+a^{n-2}+\dots+a^1+a^0 = a^0+a^1+\dots + a^{n-2}+a^{n-1}$ }}$\\\\$
IV. \ m = l: bn−1∑m=0a(m)=bn−1∑l=0a(l) $$
V. n−1∑l=0a(l)=a0+a1+a2+⋯+an−2+an−1 this is a geometric series $$ The sum s is: a0+a1+a2+⋯+an−2+an−1 $$ a∗s is: a1+a2+⋯+an−1+an $$ s−a∗s is: a0−an=1−an $$ s(1−a)=1−an $$ s=1−an1−a $$ n−1∑l=0a(l)=1−an1−a
Result: n−1∑m=0b(n−1∏j=m+1a)=bn−1∑m=0(n−1∏j=m+1a)=b∗1−an1−a $$
Oh at least we got a sight of you becoz of the question you asked!
as you might be aware this question is above my ahead so I can not do much . I hope you get an answer soon so Good Luck reinout! Btw when is your restaurant going to open?( lunch boxes?)
I. n−1∑m=0b(n−1∏j=m+1a)=bn−1∑m=0(n−1∏j=m+1a) because: b∗(p1)+b∗(p2)+b∗(p3)+...=b∗(p1+p2+p3+...) $$
\\\small{\text{ II. $\prod \limits_{j=m+1}^{n-1}(a) \right)=a^{(n-1)-(m+1)+1} $\quad because: $\ \prod \limits_{from}^{to}(a) \right)= a^{\text{to}-\text{from}+1} \quad $ example: $\ \prod \limits_{4}^{5}(a) \right)= a*a=a^{5-4+1}=a^2$ }}$\\$ \small{\text{ $\prod \limits_{j=m+1}^{n-1}(a) \right)=a^{(n-1)-m}$ }}$\\\\$
\small{\text{ III. $ b \sum\limits_{m=0}^{n-1}a^{(n-1-m)} \right) =b \sum\limits_{m=0}^{n-1}a^{(m)} \quad $ because: $a^{n-1}+a^{n-2}+\dots+a^1+a^0 = a^0+a^1+\dots + a^{n-2}+a^{n-1}$ }}$\\\\$
IV. \ m = l: bn−1∑m=0a(m)=bn−1∑l=0a(l) $$
V. n−1∑l=0a(l)=a0+a1+a2+⋯+an−2+an−1 this is a geometric series $$ The sum s is: a0+a1+a2+⋯+an−2+an−1 $$ a∗s is: a1+a2+⋯+an−1+an $$ s−a∗s is: a0−an=1−an $$ s(1−a)=1−an $$ s=1−an1−a $$ n−1∑l=0a(l)=1−an1−a
Result: n−1∑m=0b(n−1∏j=m+1a)=bn−1∑m=0(n−1∏j=m+1a)=b∗1−an1−a $$