+0

# equation

+5
309
2
+2353

Hi there :D!

reinout-g  Jan 9, 2015

#2
+19076
+10

$$\small{\text{ I.  \sum \limits_{m=0}^{n-1}b \left( \prod \limits_{j=m+1}^{n-1}a \right)=b\sum \limits_{m=0}^{n-1} \left( \prod \limits_{j=m+1}^{n-1}a \right) \quad  because:  \quad b*(p_1)+b*(p_2)+b*(p_3)+... = b*(p_1+p_2+p_3+...) }}\\\\$$$$$\\\small{\text{ II. \prod \limits_{j=m+1}^{n-1}(a) \right)=a^{(n-1)-(m+1)+1} \quad because: \ \prod \limits_{from}^{to}(a) \right)= a^{\text{to}-\text{from}+1} \quad example: \ \prod \limits_{4}^{5}(a) \right)= a*a=a^{5-4+1}=a^2 }}\\ \small{\text{ \prod \limits_{j=m+1}^{n-1}(a) \right)=a^{(n-1)-m} }}\\\\$$$

$$\small{\text{ III.  b \sum\limits_{m=0}^{n-1}a^{(n-1-m)} \right) =b \sum\limits_{m=0}^{n-1}a^{(m)} \quad  because: a^{n-1}+a^{n-2}+\dots+a^1+a^0 = a^0+a^1+\dots + a^{n-2}+a^{n-1} }}\\\\$$$$$\small{\text{ IV. \ m = l: \quad b \sum\limits_{m=0}^{n-1}a^{(m)} = b \sum\limits_{l=0}^{n-1}a^{(l)} }}\\\\$$$

$$\\\small{\text{ V.  \sum\limits_{l=0}^{n-1}a^{(l)} = a^0+a^1+a^2+\dots + a^{n-2}+a^{n-1} \quad  this is a geometric series }}\\\\ \small{\text{ The sum s is:  a^0+a^1+a^2+\dots + a^{n-2}+a^{n-1}  }}\\ \small{\text{ a*s is:  a^1+a^2+\dots + a^{n-1}+a^n  }}\\ \small{\text{ s-a*s is:  a^0-a^n=1-a^n  }}\\ \small{\text{ s(1-a)=1-a^n  }}\\ \small{\text{ s=\frac{1-a^n}{ 1-a } }}\\ \small{\text{ \sum\limits_{l=0}^{n-1}a^{(l)} = \dfrac{1-a^n}{ 1-a }  }}$$

$$\small{\text{ Result:  \sum \limits_{m=0}^{n-1}b \left( \prod \limits_{j=m+1}^{n-1}a \right)=b\sum \limits_{m=0}^{n-1} \left( \prod \limits_{j=m+1}^{n-1}a \right) =b*\dfrac{1-a^n}{ 1-a }  }}\\\\$$$heureka Jan 9, 2015 Sort: ### 2+0 Answers #1 +11843 0 Oh at least we got a sight of you becoz of the question you asked! as you might be aware this question is above my ahead so I can not do much . I hope you get an answer soon so Good Luck reinout! Btw when is your restaurant going to open?( lunch boxes?) rosala Jan 9, 2015 #2 +19076 +10 Best Answer $$\small{\text{ I. \sum \limits_{m=0}^{n-1}b \left( \prod \limits_{j=m+1}^{n-1}a \right)=b\sum \limits_{m=0}^{n-1} \left( \prod \limits_{j=m+1}^{n-1}a \right) \quad because: \quad b*(p_1)+b*(p_2)+b*(p_3)+... = b*(p_1+p_2+p_3+...) }}\\\\$$$

$$\\\small{\text{ II. \prod \limits_{j=m+1}^{n-1}(a) \right)=a^{(n-1)-(m+1)+1} \quad because: \ \prod \limits_{from}^{to}(a) \right)= a^{\text{to}-\text{from}+1} \quad  example: \ \prod \limits_{4}^{5}(a) \right)= a*a=a^{5-4+1}=a^2 }}\\ \small{\text{ \prod \limits_{j=m+1}^{n-1}(a) \right)=a^{(n-1)-m} }}\\\\$$$$$\small{\text{ III. b \sum\limits_{m=0}^{n-1}a^{(n-1-m)} \right) =b \sum\limits_{m=0}^{n-1}a^{(m)} \quad because: a^{n-1}+a^{n-2}+\dots+a^1+a^0 = a^0+a^1+\dots + a^{n-2}+a^{n-1} }}\\\\$$$

$$\small{\text{ IV. \ m = l:  \quad b \sum\limits_{m=0}^{n-1}a^{(m)} = b \sum\limits_{l=0}^{n-1}a^{(l)}  }}\\\\$$$$$\\\small{\text{ V. \sum\limits_{l=0}^{n-1}a^{(l)} = a^0+a^1+a^2+\dots + a^{n-2}+a^{n-1} \quad this is a geometric series }}\\\\ \small{\text{ The sum s is: a^0+a^1+a^2+\dots + a^{n-2}+a^{n-1} }}\\ \small{\text{ a*s is: a^1+a^2+\dots + a^{n-1}+a^n }}\\ \small{\text{ s-a*s is: a^0-a^n=1-a^n }}\\ \small{\text{ s(1-a)=1-a^n }}\\ \small{\text{ s=\frac{1-a^n}{ 1-a } }}\\ \small{\text{ \sum\limits_{l=0}^{n-1}a^{(l)} = \dfrac{1-a^n}{ 1-a } }}$$ $$\small{\text{ Result: \sum \limits_{m=0}^{n-1}b \left( \prod \limits_{j=m+1}^{n-1}a \right)=b\sum \limits_{m=0}^{n-1} \left( \prod \limits_{j=m+1}^{n-1}a \right) =b*\dfrac{1-a^n}{ 1-a } }}\\\\$$$

heureka  Jan 9, 2015

### 24 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details