+0  
 
+5
264
2
avatar+2353 

Hi there :D!

 

Can someone please help me figure out this equation?

 

Thanks in advance!

difficulty advanced
reinout-g  Jan 9, 2015

Best Answer 

 #2
avatar+18827 
+10

$$\small{\text{
I.
$
\sum \limits_{m=0}^{n-1}b \left( \prod \limits_{j=m+1}^{n-1}a \right)=b\sum \limits_{m=0}^{n-1} \left( \prod \limits_{j=m+1}^{n-1}a \right)
\quad $
because: $ \quad b*(p_1)+b*(p_2)+b*(p_3)+... = b*(p_1+p_2+p_3+...)$
}}$\\\\$$$

$$\\\small{\text{
II.
$\prod \limits_{j=m+1}^{n-1}(a) \right)=a^{(n-1)-(m+1)+1} $\quad
because: $\ \prod \limits_{from}^{to}(a) \right)= a^{\text{to}-\text{from}+1} \quad $ example: $\ \prod \limits_{4}^{5}(a) \right)= a*a=a^{5-4+1}=a^2$
}}$\\$
\small{\text{
$\prod \limits_{j=m+1}^{n-1}(a) \right)=a^{(n-1)-m}$
}}$\\\\$$$

$$\small{\text{
III.
$
b \sum\limits_{m=0}^{n-1}a^{(n-1-m)} \right)
=b \sum\limits_{m=0}^{n-1}a^{(m)} \quad $ because: $a^{n-1}+a^{n-2}+\dots+a^1+a^0 = a^0+a^1+\dots + a^{n-2}+a^{n-1}$
}}$\\\\$$$

$$\small{\text{
IV. \ m = l:
$ \quad b \sum\limits_{m=0}^{n-1}a^{(m)} =
b \sum\limits_{l=0}^{n-1}a^{(l)} $
}}$\\\\$$$

$$\\\small{\text{
V.
$ \sum\limits_{l=0}^{n-1}a^{(l)} = a^0+a^1+a^2+\dots + a^{n-2}+a^{n-1} \quad $ this is a geometric series
}}$\\\\$
\small{\text{
The sum $s$ is:
$
a^0+a^1+a^2+\dots + a^{n-2}+a^{n-1}
$
}}$\\$
\small{\text{
$a*s$ is:
$
a^1+a^2+\dots + a^{n-1}+a^n
$
}}$\\$
\small{\text{
$s-a*s$ is:
$
a^0-a^n=1-a^n
$
}}$\\$
\small{\text{
$s(1-a)=1-a^n
$
}}$\\$
\small{\text{
$s=\frac{1-a^n}{ 1-a }$
}}$\\$
\small{\text{
$\sum\limits_{l=0}^{n-1}a^{(l)} = \dfrac{1-a^n}{ 1-a }
$
}}$$

$$\small{\text{
Result:
$
\sum \limits_{m=0}^{n-1}b \left( \prod \limits_{j=m+1}^{n-1}a \right)=b\sum \limits_{m=0}^{n-1} \left( \prod \limits_{j=m+1}^{n-1}a \right)
=b*\dfrac{1-a^n}{ 1-a }
$
}}$\\\\$$$

heureka  Jan 9, 2015
Sort: 

2+0 Answers

 #1
avatar+11757 
0

Oh at least we got a sight of you becoz of the question you asked!

 

as you might be aware this question is above my ahead so I can not do much . I hope you get an answer soon so Good Luck reinout! Btw when is your restaurant going to open?( lunch boxes?)

rosala  Jan 9, 2015
 #2
avatar+18827 
+10
Best Answer

$$\small{\text{
I.
$
\sum \limits_{m=0}^{n-1}b \left( \prod \limits_{j=m+1}^{n-1}a \right)=b\sum \limits_{m=0}^{n-1} \left( \prod \limits_{j=m+1}^{n-1}a \right)
\quad $
because: $ \quad b*(p_1)+b*(p_2)+b*(p_3)+... = b*(p_1+p_2+p_3+...)$
}}$\\\\$$$

$$\\\small{\text{
II.
$\prod \limits_{j=m+1}^{n-1}(a) \right)=a^{(n-1)-(m+1)+1} $\quad
because: $\ \prod \limits_{from}^{to}(a) \right)= a^{\text{to}-\text{from}+1} \quad $ example: $\ \prod \limits_{4}^{5}(a) \right)= a*a=a^{5-4+1}=a^2$
}}$\\$
\small{\text{
$\prod \limits_{j=m+1}^{n-1}(a) \right)=a^{(n-1)-m}$
}}$\\\\$$$

$$\small{\text{
III.
$
b \sum\limits_{m=0}^{n-1}a^{(n-1-m)} \right)
=b \sum\limits_{m=0}^{n-1}a^{(m)} \quad $ because: $a^{n-1}+a^{n-2}+\dots+a^1+a^0 = a^0+a^1+\dots + a^{n-2}+a^{n-1}$
}}$\\\\$$$

$$\small{\text{
IV. \ m = l:
$ \quad b \sum\limits_{m=0}^{n-1}a^{(m)} =
b \sum\limits_{l=0}^{n-1}a^{(l)} $
}}$\\\\$$$

$$\\\small{\text{
V.
$ \sum\limits_{l=0}^{n-1}a^{(l)} = a^0+a^1+a^2+\dots + a^{n-2}+a^{n-1} \quad $ this is a geometric series
}}$\\\\$
\small{\text{
The sum $s$ is:
$
a^0+a^1+a^2+\dots + a^{n-2}+a^{n-1}
$
}}$\\$
\small{\text{
$a*s$ is:
$
a^1+a^2+\dots + a^{n-1}+a^n
$
}}$\\$
\small{\text{
$s-a*s$ is:
$
a^0-a^n=1-a^n
$
}}$\\$
\small{\text{
$s(1-a)=1-a^n
$
}}$\\$
\small{\text{
$s=\frac{1-a^n}{ 1-a }$
}}$\\$
\small{\text{
$\sum\limits_{l=0}^{n-1}a^{(l)} = \dfrac{1-a^n}{ 1-a }
$
}}$$

$$\small{\text{
Result:
$
\sum \limits_{m=0}^{n-1}b \left( \prod \limits_{j=m+1}^{n-1}a \right)=b\sum \limits_{m=0}^{n-1} \left( \prod \limits_{j=m+1}^{n-1}a \right)
=b*\dfrac{1-a^n}{ 1-a }
$
}}$\\\\$$$

heureka  Jan 9, 2015

19 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details