CPhill

avatar
UsernameCPhill
Score128731
Membership
Stats
Questions 56
Answers 42646

 #1
avatar+128731 
+5

Maybe not the most simple way....but

 

Let A(--2, 4)    B = (2, 4)    C  = (2, 0)    D = (-2, 0)

 

The height of the equilateral triangle will  be    side/ 2 * sqrt (3)  = 4/2 * sqrt (3) = 2 sqrt (3)

 

So point E will be located at  (0, 4 - 2sqrt (3) )

And using points B and E we can write the equation for the line containg the segment BE

The slope is    [ 4 -(4- 2sqrt (3)) ] / [ 2 - 0]  =  2sqrt(3) / 2  =  sqrt (3)

So....the equation of this line  is

y =  sqrt (3) ( x - 2) + 4

y = sqrt (3)x - 2sqrt(3) + 4

y = sqrt (3)x + (4 - 2sqrt (3) )       (1)

 

And we can find the equation of the line that joins AC

The slope is   [ 4 - 0 ] / [ -2 - 2 ]  =   4/-4 = - 1

So....the equation of this line is

y = -(x - 0) + 2

y = -x + 2       (2)

 

Set (1)  = (2) to find the x coordinate of P

 

sqrt (3) x + (4 - 2sqrt (3) )  = - x + 2        rearrange

 

x ( sqrt (3) + 1)  =  2 - 4 + 2sqrt (3)

x ( sqrt (3) + 1)  =  2sqrt (3) - 2

 

x  =  [ 2sqrt ( 3) - 2 ]

       _____________        rationalize the denominator

            sqrt (3) + 1

 

        [ 2sqrt (3) - 2 ] [ sqrt (3) - 1]             6 - 2sqrt (3) - 2sqrt (3) + 2

x =  ________________________  =   _______________________  =

        [sqrt (3)+ 1] [ sqrt (3) - 1 ]                    3 -  1

 

8 - 4sqrt (3)                4 - 2sqrt (3)

_________       =

    2

 

So the y coordinate of P  =

 

y = -( 4- 2sqrt (3))+ 2  =   2sqrt (3) - 2

 

So  the  area  of triangle APE  =   Area of triangle ABE - Area of triangle APB

 

Area of triangle  AEB  = (1/2)base * (height)  =  (1/2) (4) (  2sqrt (3))  = 2 (2sqrt (3))  = 

4sqrt (3)  units^2

 

And the area of triangle  APB  = (1/2) base (height) = (1/2)(4) [4 - (2sqrt (3) - 2 ) ]  =

2 ( 6 - 2sqrt (3) )  =  12 - 4sqrt (3)   units^2

 

So...the area of triangle APE  =  [ 4sqrt (3)]  - [ 12 - 4sqrt (3) ]  = [8sqrt (3) - 12] units^2 =

 

4 [ 2sqrt (3) - 3 ]  units^2  

 

 

cool cool cool

May 26, 2019