We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
127
4
avatar+133 

Find the ordered pair \((a,b)\) of real numbers such that the cubic polynomials \(x^3 + ax^2 + 11x + 6 = 0\) and \(x^3 + bx^2 + 14x + 8 = 0\) have two distinct roots in common.

 May 25, 2019
 #1
avatar+102804 
0

I'd also like to see someone answer this.

 May 26, 2019
 #2
avatar+28125 
+3

Here is my attempt:

 

.

 May 26, 2019
 #3
avatar+102804 
0

Thanks Alan,

I have not finished looking at your answer but your start is similar to mine.

I did not bother with expanding

I used  this

if:

\(ax^3+bx^2+cx+d=0\\ \text{and the roots are u,v and t}\\ then\\ u+v+t=-\frac{b}{a}\\ uv+ut+vt=+\frac{c}{a}\\ uvt=-\frac{d}{a}\)

 

The relevance is that I think uvt=-8

 

I got this far myself but then I got into a mess. 

I am eager to examine the rest of your answer.   laugh

 May 26, 2019
 #4
avatar+102434 
+1

x^3 + ax^2 + 11x + 6 = 0  (1)

x^3 + bx^2 + 14x + 8  = 0   (2)

 

By the Rational Roots Theorem, the possible  zeroes  for the first polynomial are ±  [ 1, 2 , 3 , 6]

And for the second polynomial they are ±  [ 1,2,3,4] 

 

Subtract (1) from (2)  and we get that

 

(b - a) x^2 + 3x + 2  = 0    

 

Two possible shared roots  of  -1 and - 2  can be found if we let  b - a  = 1

 

So we have that

x^2 + 3x+ 2  = 0

(x + 1) ( x + 2)  = 0

x = - 1  and x = -2

 

Now   let x  = -1   as a shared root

Then  (-1)^3 + a(-1)^2 + 11(-1) + 6  = 0

-1 + a - 11 + 6  = 0

And a =6

 

Also

(-1)^3 + b(-1)^2 + 14(-1) +8 = 0

-1 + b -14 + 8  = 0

And b = 7

 

So testing (-2) as a root we have that

 

(-2)^3 + 6(-2)^2 + 11(-2) + 6  =

-8 + 24 - 22 + 6  =

0

 

And 

(-2)^3 + 7(-2)^2 + 14(-2)  + 8 =

-8 + 28 -28 + 8  =

0

 

So

 

(a,b ) =  (6, 7)

 

Here is the graph to show that this is true :https://www.desmos.com/calculator/y69o2yts2n

 

 

cool cool cool

 May 26, 2019
edited by CPhill  May 26, 2019
edited by CPhill  May 26, 2019

9 Online Users