In the diagram, square ABCD has sides of length 4, and triangle ABE is equilateral. Line segments BE and AC intersect at P. Point Q is on BC so that PQ is perpendicular to BC and PQ=x.
Find the area of triangle APE in simplest radical form.
THANK YOU GUYS FOR ANY HELP AT ALL!
Maybe not the most simple way....but
Let A(--2, 4) B = (2, 4) C = (2, 0) D = (-2, 0)
The height of the equilateral triangle will be side/ 2 * sqrt (3) = 4/2 * sqrt (3) = 2 sqrt (3)
So point E will be located at (0, 4 - 2sqrt (3) )
And using points B and E we can write the equation for the line containg the segment BE
The slope is [ 4 -(4- 2sqrt (3)) ] / [ 2 - 0] = 2sqrt(3) / 2 = sqrt (3)
So....the equation of this line is
y = sqrt (3) ( x - 2) + 4
y = sqrt (3)x - 2sqrt(3) + 4
y = sqrt (3)x + (4 - 2sqrt (3) ) (1)
And we can find the equation of the line that joins AC
The slope is [ 4 - 0 ] / [ -2 - 2 ] = 4/-4 = - 1
So....the equation of this line is
y = -(x - 0) + 2
y = -x + 2 (2)
Set (1) = (2) to find the x coordinate of P
sqrt (3) x + (4 - 2sqrt (3) ) = - x + 2 rearrange
x ( sqrt (3) + 1) = 2 - 4 + 2sqrt (3)
x ( sqrt (3) + 1) = 2sqrt (3) - 2
x = [ 2sqrt ( 3) - 2 ]
_____________ rationalize the denominator
sqrt (3) + 1
[ 2sqrt (3) - 2 ] [ sqrt (3) - 1] 6 - 2sqrt (3) - 2sqrt (3) + 2
x = ________________________ = _______________________ =
[sqrt (3)+ 1] [ sqrt (3) - 1 ] 3 - 1
8 - 4sqrt (3) 4 - 2sqrt (3)
_________ =
2
So the y coordinate of P =
y = -( 4- 2sqrt (3))+ 2 = 2sqrt (3) - 2
So the area of triangle APE = Area of triangle ABE - Area of triangle APB
Area of triangle AEB = (1/2)base * (height) = (1/2) (4) ( 2sqrt (3)) = 2 (2sqrt (3)) =
4sqrt (3) units^2
And the area of triangle APB = (1/2) base (height) = (1/2)(4) [4 - (2sqrt (3) - 2 ) ] =
2 ( 6 - 2sqrt (3) ) = 12 - 4sqrt (3) units^2
So...the area of triangle APE = [ 4sqrt (3)] - [ 12 - 4sqrt (3) ] = [8sqrt (3) - 12] units^2 =
4 [ 2sqrt (3) - 3 ] units^2
In the diagram, square ABCD has sides of length 4, and triangle ABE is equilateral.
Line segments BE and AC intersect at P. Point Q is on BC so that PQ is perpendicular to BC and PQ=x.
Find the area of triangle APE in simplest radical form.
\(\begin{array}{|rcll|} \hline \text{area}_{[BCP]} &=& \dfrac{4x}{2}=2x \\\\ \text{area}_{[ABC]} &=& \dfrac{4^2}{2} = 8 \\\\ \text{area}_{[ABE]} &=& \dfrac{4\cdot 2\sqrt{3}}{2} = 4\sqrt{3} \quad | \quad h = 2\sqrt{3} \\ \hline \text{area}_{[APE]} &=& \text{area}_{[ABE]}+\text{area}_{[BCP]} -\text{area}_{[ABC]}\\\\ &=& 4\sqrt{3}+2x -8 \\ \hline \end{array}\)
\(\mathbf{x=\ ?}\)
\(\begin{array}{|lrcll|} \hline (1): & \tan(45^\circ) &=& \dfrac{x}{CQ} \quad | \quad \tan(45^\circ) = 1 \\ & 1 &=& \dfrac{x}{CQ} \\ & \mathbf{CQ} &=& \mathbf{x} \\ \hline (2): & \tan(30^\circ) &=& \dfrac{x}{4-CQ} \quad | \quad CQ=x \\\\ & \tan(30^\circ) &=& \dfrac{x}{4-x} \quad | \quad \tan(30^\circ) = \dfrac{\sqrt{3}}{3} \\\\ & \dfrac{\sqrt{3}}{3} &=& \dfrac{x}{4-x} \\\\ & (4-x)\sqrt{3} &=& 3x \\ & 4\sqrt{3}-x\sqrt{3} &=& 3x \\ & x\sqrt{3} + 3x&=& 4\sqrt{3} \\ & x(3+\sqrt{3})&=& 4\sqrt{3} \\\\ & x &=& \dfrac{4\sqrt{3}} {3+\sqrt{3}} \\\\ & x &=& \dfrac{4\sqrt{3}} {3+\sqrt{3}}\times \dfrac{(3-\sqrt{3})}{(3-\sqrt{3})} \\\\ & x &=& \dfrac{4\sqrt{3}(3-\sqrt{3})} {9-3} \\\\ & x &=& \dfrac{4\sqrt{3}(3-\sqrt{3})} {6} \\\\ & x &=& \dfrac{2\sqrt{3}(3-\sqrt{3})} {3} \\\\ & x &=& \dfrac{2\sqrt{3}\cdot 3 } {3} - \dfrac{2} {3} \cdot 3 \\\\ & \mathbf{x} &=& \mathbf{2\sqrt{3} - 2} \\ \hline \end{array}\)
\(\begin{array}{|rcll|} \hline \text{area}_{[APE]} &=& 4\sqrt{3}+2x -8 \quad | \quad x=2\sqrt{3} - 2 \\ &=& 4\sqrt{3}+2(2\sqrt{3} - 2) -8 \\ &=& 8\sqrt{3} -12 \\ \mathbf{\text{area}_{[APE]}}&=& \mathbf{4(2\sqrt{3} -3)} \\ \hline \end{array}\)