Expand
\(\frac{(1-2a)^2}{6}-a^2- \frac{14-a^7}{3} \)
Find common denominator. it is 6
\(-\frac{2(-a^7+14)}{6}-\frac{6a^2}{6}+\frac{(-2a+1)^2}{6}\)
\(\frac{-2(-a^7+14)-6a^2+(-2a+1)^2}{6} \)
Expand this part
\( (-2a+1)^2\)
to this
\(4a^2-4a+1 \)
then expand this
\(-2(-a^7+14)\)
to this
\(2a^7-28 \)
then combine the parts
\(2a^7-6a^2+4a^2-4a+1-28 \)
simplefy it and put it over the 6 and make equal to 0
\(\frac{2a^7-2a^2-4a-27}{6} =0\)
change to this
\(\frac{2a^7-2a^2-4a}{6} =\frac{27}{6}\)
change to this
\(2a^7-2a^2-4a =27 \)
I out of time. Next post I solve it (or try to).