hectictar

avatar
Usernamehectictar
Score9468
Membership
Stats
Questions 10
Answers 3005

 #5
avatar+9468 
+4
Jul 12, 2019
 #2
avatar+9468 
+5

2)  This one is tricky but here's my attempt...

 

I started by making this list:

 

b( 1 ) _ = _ 1
b( 2 ) = 1
b( 3 ) = 2
b( 4 ) = 2
b( 5 ) = 2
b( 6 ) = 2
b( 7 ) = 3
b( 8 ) = 3
b( 9 ) = 3
b( 10 ) = 3
b( 11 ) = 3
b( 12 ) = 3
b( 13 ) = 4
b( 14 ) = 4
b( 15 ) = 4
b( -16- ) = 4

.

.

.

       
b( 1980 ) = 44
b( 1981 ) = 45
b( 1982 ) = 45
b( 1983 ) = 45
b( 1984 ) = 45
b( 1985 ) = 45
b( 1986 ) = 45
b( 1987 ) = 45
b( 1988 ) = 45
b( 1989 ) = 45
b( 1990 ) = 45
b( 1991 ) = 45
b( 1992 ) = 45
b( 1993 ) = 45
b( 1994 ) = 45
b( 1995 ) = 45
b( 1996 ) = 45
b( 1997 ) = 45
b( 1998 ) = 45
b( 1999 ) = 45
b( 2000 ) = 45
b( 2001 ) = 45
b( 2002 ) = 45
b( 2003 ) = 45
b( 2004 ) = 45
b( 2005 ) = 45
b( 2006 ) = 45
b( 2007 ) = 45

 

By now we can notice something...

 

b( 7 )  =  3   because  7   is closer to  9  than  4,  and
b( 12 )  =  3   because  12   is closer to  9  than  16

 

Between  4  and  9 ,  there are  4  numbers and  4/2  =  2

 

Between  9  and  16  there are  6  numbers and  6/2  =  3

 

So the number of 3's   =  1 + 2 + 3   =   6

 

We can backtrack the previous steps to get...

 

the number of 3's   =   \(1+\frac{4}{2}+\frac62\ =\ 1+\frac{9-4-1}{2}+\frac{16-9-1}{2}\ =\ 1+\frac{3^2-(3-1)^2-1}{2}+\frac{(3+1)^2-3^2-1}{2}\)

 

So in general,

 

the number of  n's   =   \(1+\frac{n^2-(n-1)^2-1}{2}+\frac{(n+1)^2-n^2-1}{2}\)     which simplifies to...

 

the number of n's   =   2n

 

This agrees with the list from earlier!!! laughlaugh

 

Except the number of  45's  is only  27  because the list ends at  b(2007)

 

\(\sum\limits_{p=1}^{2007}b(p)\ =\ b(1)+b(2)+b(3)+b(4)+b(5)+b(6)+b(7)+\dots+b(2006)+b(2007)\\~\\ \sum\limits_{p=1}^{2007}b(p)\ =\ 1+1+2+2+2+2+3+\dots+45+45\\~\\ \sum\limits_{p=1}^{2007}b(p)\ =\ 2(1)+4(2)+6(3)+\dots+88(44)+27(45)\\~\\ \sum\limits_{p=1}^{2007}b(p)\ =\ \sum\limits_{k=1}^{44}(2k)(k)\quad+\ 27(45)\\~\\ \sum\limits_{p=1}^{2007}b(p)\ =\ \sum\limits_{k=1}^{44}(2k)(k)\quad+\ 27(45)\\~\\ \sum\limits_{p=1}^{2007}b(p)\ =\ 2\sum\limits_{k=1}^{44}k^2\quad+\ 27(45)\\~\\ \sum\limits_{p=1}^{2007}b(p)\ =\ 2(\frac{44(44+1)(2(44)+1)}{6})\quad+\ 27(45)\\~\\ \sum\limits_{p=1}^{2007}b(p)\ =\ 58740\quad+\ 1215\\~\\ \sum\limits_{p=1}^{2007}b(p)\ =\ 59955 \)

 

 

P.S. There definitely might be a better way to do it... smiley

Jul 12, 2019
 #1
avatar+9468 
+5

a + ab2  =  40b

a - ab2  =  -32b

 

The purple values are equal and the blue values are equal.  purple + blue  =  purple + blue

 

(a + ab2) + (a - ab2)  =  40b + -32b

 

(a + ab2) + (a - ab2)  =  40b + -32b

 

2a  =  8b

 

\(\frac14\)a  =  b

 

Now we can substitute this value for  b  into one of the original equations.

 

a + ab2  =  40b

                                    Substitute   \(\frac14\)a   in for   b

a + a(\(\frac14\)a)2  =  40(\(\frac14\)a)

                                    Simplify both sides of the equation.

a + \(\frac{1}{16}\)a3   =   10a

                                    Multiply through by  16

16a + a3  =  160a

                                    Subtract  16a  and subtract  a3  from both sides

0  =  144a - a3

                                    Factor  a  out of both terms on the right side

0  =  a( 144 - a2 )

                                           Factor   144 - a2   as a difference of squares

0  =  a( 12 - a )( 12 + a )

                                           Set each factor equal to  0  and solve for  a

0  =  a ___ or ___ 12 - a  =  0 ___ or ___ 12 + a  =  0

 

 

a  =  0   a  =  12   a  =  -12  

 

Here is another answer for this question:  https://web2.0calc.com/questions/help-plz_7742

Jul 7, 2019
 #1
avatar+9468 
+5

(a)  https://web2.0calc.com/questions/math-halp-plz#r1

 

(b)

 

 

 

 

Let     AB  =  c     (because it is the side across from angle C)

and    AC  =  b     (because it is the side across from angle B)

and    BC  =  a     (because it is the side across from angle A)

 

Draw a height from  M  which meets side  AC  at point  D

 

m∠BAC  =  m∠MAD     because they are the same angle

m∠ACB  =  m∠ADM     because they are both right angles

 

So by AA similarity,  △ABC ~ △AMD

 

And we know   AM  =  c / 2   because  M  is the midpoint of  AB

 

So the scale factor from  △ABC  to  △AMD  is  1/2   And so...

 

AM  =  c / 2

AD  =  b / 2

DM  =  a / 2

 

Then by SAS congruence we can determine that  △ADM  ≅  △CDM   and so...

 

CM  =  AM

CM  =  c / 2

CM  =  (1/2)(AB)

Jul 7, 2019