We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
178
1
avatar

In triangle $ABC,$ let $M$ be the midpoint of $\overline{AB}.$ (a) Prove that if $CM = \frac{1}{2} AB,$ then $\angle ACB = 90^\circ.$ (b) Prove that if $\angle ACB = 90^\circ,$ then $CM = \frac{1}{2} AB.$

 Jul 7, 2019

Best Answer 

 #1
avatar+8577 
+3

(a)  https://web2.0calc.com/questions/math-halp-plz#r1

 

(b)

 

 

 

 

Let     AB  =  c     (because it is the side across from angle C)

and    AC  =  b     (because it is the side across from angle B)

and    BC  =  a     (because it is the side across from angle A)

 

Draw a height from  M  which meets side  AC  at point  D

 

m∠BAC  =  m∠MAD     because they are the same angle

m∠ACB  =  m∠ADM     because they are both right angles

 

So by AA similarity,  △ABC ~ △AMD

 

And we know   AM  =  c / 2   because  M  is the midpoint of  AB

 

So the scale factor from  △ABC  to  △AMD  is  1/2   And so...

 

AM  =  c / 2

AD  =  b / 2

DM  =  a / 2

 

Then by SAS congruence we can determine that  △ADM  ≅  △CDM   and so...

 

CM  =  AM

CM  =  c / 2

CM  =  (1/2)(AB)

 Jul 7, 2019
 #1
avatar+8577 
+3
Best Answer

(a)  https://web2.0calc.com/questions/math-halp-plz#r1

 

(b)

 

 

 

 

Let     AB  =  c     (because it is the side across from angle C)

and    AC  =  b     (because it is the side across from angle B)

and    BC  =  a     (because it is the side across from angle A)

 

Draw a height from  M  which meets side  AC  at point  D

 

m∠BAC  =  m∠MAD     because they are the same angle

m∠ACB  =  m∠ADM     because they are both right angles

 

So by AA similarity,  △ABC ~ △AMD

 

And we know   AM  =  c / 2   because  M  is the midpoint of  AB

 

So the scale factor from  △ABC  to  △AMD  is  1/2   And so...

 

AM  =  c / 2

AD  =  b / 2

DM  =  a / 2

 

Then by SAS congruence we can determine that  △ADM  ≅  △CDM   and so...

 

CM  =  AM

CM  =  c / 2

CM  =  (1/2)(AB)

hectictar Jul 7, 2019

11 Online Users

avatar