We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
155
1
avatar

Write the equation, in slope-intercept form, of the line passing through the origin and the point (-4,3) .

 Jul 9, 2019

Best Answer 

 #1
avatar+8829 
+5

Using the information that the line passes through the points  (0, 0)  and  (-4, 3) ,  we can find the slope.

 

slope  =  \(\frac{\text{rise}}{\text{run}}\ =\ \frac{y_2-y_1}{x_2-x_1}\ =\ \frac{3-0}{-4-0}\ =\ -\frac34\)

 

Using the point  (0, 0)  and the slope  -\(\frac34\) ,  the equation of the line in point-slope form is

 

y - 0  =  -\(\frac34\)(x - 0)

 

Simplify both sides of the equation to get

 

y  =  -\(\frac34\)x

 Jul 9, 2019
 #1
avatar+8829 
+5
Best Answer

Using the information that the line passes through the points  (0, 0)  and  (-4, 3) ,  we can find the slope.

 

slope  =  \(\frac{\text{rise}}{\text{run}}\ =\ \frac{y_2-y_1}{x_2-x_1}\ =\ \frac{3-0}{-4-0}\ =\ -\frac34\)

 

Using the point  (0, 0)  and the slope  -\(\frac34\) ,  the equation of the line in point-slope form is

 

y - 0  =  -\(\frac34\)(x - 0)

 

Simplify both sides of the equation to get

 

y  =  -\(\frac34\)x

hectictar Jul 9, 2019

36 Online Users

avatar
avatar
avatar