+0  
 
0
315
1
avatar

Write the equation, in slope-intercept form, of the line passing through the origin and the point (-4,3) .

 Jul 9, 2019

Best Answer 

 #1
avatar+8966 
+5

Using the information that the line passes through the points  (0, 0)  and  (-4, 3) ,  we can find the slope.

 

slope  =  \(\frac{\text{rise}}{\text{run}}\ =\ \frac{y_2-y_1}{x_2-x_1}\ =\ \frac{3-0}{-4-0}\ =\ -\frac34\)

 

Using the point  (0, 0)  and the slope  -\(\frac34\) ,  the equation of the line in point-slope form is

 

y - 0  =  -\(\frac34\)(x - 0)

 

Simplify both sides of the equation to get

 

y  =  -\(\frac34\)x

 Jul 9, 2019
 #1
avatar+8966 
+5
Best Answer

Using the information that the line passes through the points  (0, 0)  and  (-4, 3) ,  we can find the slope.

 

slope  =  \(\frac{\text{rise}}{\text{run}}\ =\ \frac{y_2-y_1}{x_2-x_1}\ =\ \frac{3-0}{-4-0}\ =\ -\frac34\)

 

Using the point  (0, 0)  and the slope  -\(\frac34\) ,  the equation of the line in point-slope form is

 

y - 0  =  -\(\frac34\)(x - 0)

 

Simplify both sides of the equation to get

 

y  =  -\(\frac34\)x

hectictar Jul 9, 2019

5 Online Users

avatar