heureka

avatar
Usernameheureka
Score26367
Membership
Stats
Questions 17
Answers 5678

 #1
avatar+26367 
+8

I assume: Compute 1*1/2+2*1/4+3*1/8+...+n*1/2^n+...

 

Compute:

\(\displaystyle s = 1\cdot \dfrac12+2\cdot\dfrac14+ 3\cdot \dfrac18+ 4\cdot \dfrac{1}{16}+\ldots + n\cdot \dfrac{1}{2^n}+\ldots \infty\)

 

\(\begin{array}{|lrll|} \hline &s =& \displaystyle 1\cdot \dfrac12+2\cdot\dfrac14+ 3\cdot \dfrac18+ 4\cdot \dfrac{1}{16}+\ldots + n\cdot \dfrac{1}{2^n}+\ldots \infty \\\\ &s =& \displaystyle 1\cdot \left(\dfrac12\right)^1+2\cdot\left(\dfrac12\right)^2+ 3\cdot \left(\dfrac12\right)^3+ 4\cdot \left(\dfrac{1}{2}\right)^4+\ldots + n\cdot \left(\dfrac{1}{2} \right)^n+\ldots \infty \\\\ && \displaystyle\qquad \text{We substitute:} \quad \boxed{x=\dfrac12} \\\\ &s =& \displaystyle 1x^1+2x^2+ 3x^3+ 4x^4+\ldots + nx^n+\ldots \infty \quad | \quad : x \\\\ &\dfrac{s}{x} =& \displaystyle 1x^0+2x^1+ 3x^2+ 4x^3+\ldots + nx^{n-1}+\ldots \infty \\\\ &\dfrac{s}{x} =& \displaystyle \sum \limits_{n=1}^{\infty} nx^{n-1} \quad | \quad \cdot \ dx \\\\ &\dfrac{s}{x}\ dx =& \displaystyle \sum \limits_{n=1}^{\infty} \left( nx^{n-1}\ dx \right) \quad | \quad \text{integrate both sides} \\\\ &\int \dfrac{s}{x}\ dx =& \displaystyle \int \left(\sum \limits_{n=1}^{\infty} \left( nx^{n-1}\ dx \right) \right) \\\\ &\int \dfrac{s}{x}\ dx =& \displaystyle \sum \limits_{n=1}^{\infty} x^{n} \quad | \quad \text{This is the sum of a infinite geometric series},\ a_1=x,\ r=x \\\\ && \displaystyle\qquad \text{The sum of this infinite geometric series is:} \quad \boxed{= \dfrac{x}{1-x},\ \quad |x| \lt 1 } \\\\ &\int \dfrac{s}{x}\ dx =& \displaystyle \dfrac{x}{1-x} \quad | \quad \text{derivate both sides} \\\\ & \dfrac{s}{x} =& \displaystyle 1\cdot(1-x)^{-1}+x\cdot(-1)\cdot(1-x)^{-2}\cdot(-1) \\\\ & \dfrac{s}{x} =& \displaystyle \dfrac{1}{1-x} + \dfrac{x}{(1-x)^2} \\\\ & \dfrac{s}{x} =& \displaystyle \dfrac{1-x+x}{(1-x)^2} \\\\ & \dfrac{s}{x} =& \displaystyle \dfrac{1}{(1-x)^2} \\\\ & \mathbf{s=}& \mathbf{\displaystyle \dfrac{x}{(1-x)^2}} \quad | \quad x=\dfrac12 \\\\ & s= & \displaystyle \dfrac{\dfrac12}{\left(1-\dfrac12 \right)^2} \\\\ & s= & \displaystyle \dfrac{\dfrac12}{\left(\dfrac12 \right)^2} \\\\ & s= &\displaystyle \dfrac{1}{ \dfrac12 }\\\\ & \mathbf{s=}& \mathbf{\displaystyle 2} \\ \hline \end{array}\)

 

\(\displaystyle 1\cdot \dfrac12+2\cdot\dfrac14+ 3\cdot \dfrac18+ 4\cdot \dfrac{1}{16}+\ldots + n\cdot \dfrac{1}{2^n}+\ldots \infty = 2\)

 

laugh

Sep 13, 2018
 #5
avatar+26367 
+7
Sep 11, 2018
 #1
avatar+26367 
+7

Calculate

 

Calculate:

\(\begin{array}{|lcll|} \hline \mathbf{ S_n = \dfrac{1}{1 \cdot 2 \cdot 3} + \dfrac{1}{2 \cdot 3 \cdot 4} + \dfrac{1}{3 \cdot 4 \cdot 5} + \dfrac{1}{4 \cdot 5 \cdot 6} + \cdots \ + \dfrac{1}{n \cdot (n+1) \cdot (n+2)}} \\ \hline \end{array}\)

 

Formula:

\(\begin{array}{|lcll|} \hline \text{in general}:\ \dfrac{1}{n(n+d)} = \dfrac{1}{d}\left(\dfrac{1}{n}- \dfrac{1}{n+d} \right) \\ \hline \\ \begin{array}{lrcll} \text{we need}: & \dfrac{1}{(n+1)(n+2)} &=& \dfrac{1}{n+1}-\dfrac{1}{n+2} \\\\ & \dfrac{1}{n(n+1)} &=& \dfrac{1}{n}-\dfrac{1}{n+1} \\\\ & \dfrac{1}{n(n+2)} &=& \dfrac{1}{2} \left( \dfrac{1}{n}-\dfrac{1}{n+2} \right) \\ \end{array} \\ \hline \end{array}\)

 

We rearrange:

\(\begin{array}{|rcll|} \hline \dfrac{1}{n \cdot (n+1) \cdot (n+2)} \\\\ &=& \dfrac{1}{n}\times \dfrac{1}{(n+1) \cdot (n+2)} \\\\ &=& \dfrac{1}{n}\times \left( \dfrac{1}{n+1}-\dfrac{1}{n+2} \right) \\\\ &=& \dfrac{1}{n}\times \dfrac{1}{n+1} - \dfrac{1}{n}\times \dfrac{1}{n+2} \\\\ &=& \left(\dfrac{1}{n}-\dfrac{1}{n+1} \right)- \dfrac{1}{2} \times \left(\dfrac{1}{n} -\dfrac{1}{n+2} \right) \\\\ &=& \dfrac{1}{n} - \dfrac{1}{n+1} -\dfrac{1}{2n} + \dfrac{1}{2(n+2)} \\\\ \mathbf{\dfrac{1}{n \cdot (n+1) \cdot (n+2)} } & \mathbf{=} & \mathbf{ \dfrac{1}{2n} - \dfrac{1}{n+1} + \dfrac{1}{2(n+2)} } \\ \hline \end{array}\)

 

Telescoping series:

\(\begin{array}{|rcll|} \hline S_n &=& \mathbf{\dfrac{1}{2}} &\mathbf{-}& \mathbf{\dfrac{1}{2}} &\color{red}+& \color{red}\dfrac{1}{6} \\\\ &\mathbf{+}& \mathbf{\dfrac{1}{4}} &\color{red}-& \color{red}\dfrac{1}{3} &\color{blue}+& \color{blue}\dfrac{1}{8} \\\\ &\color{red}+& \color{red}\dfrac{1}{6} &\color{blue}-& \color{blue}\dfrac{1}{4} &\color{red}+& \color{red}\dfrac{1}{10} \\\\ &\color{blue}+& \color{blue}\dfrac{1}{8} &\color{red}-& \color{red}\dfrac{1}{5} &\color{green}+& \color{green}\dfrac{1}{12} \\\\ && \ldots \\\\ &+\color{red}& \color{red}\dfrac{1}{2(n-2)} &\color{green}-& \color{green}\dfrac{1}{n-1} &\color{red}+& \color{red}\dfrac{1}{2n} \\\\ &\color{green}+& \color{green}\dfrac{1}{2(n-1)} &\color{red}-& \color{red}\dfrac{1}{n} &\mathbf{+}& \mathbf{\dfrac{1}{2(n+1)}} \\\\ &\color{red}+& \color{red}\dfrac{1}{2n} &\mathbf{-}& \mathbf{\dfrac{1}{n+1}} &\mathbf{+}& \mathbf{\dfrac{1}{2(n+2)}} \\ \hline \end{array}\)

 

The part of each term cancelling with part of the next two diagonal terms:
Example:

\(\begin{array}{|lcll|} \hline \dfrac{1}{6}-\dfrac{1}{3}+\dfrac{1}{6} = 0 \\\\ \dfrac{1}{8}-\dfrac{1}{4}+\dfrac{1}{8} = 0 \\\\ \dfrac{1}{10}-\dfrac{1}{5}+\dfrac{1}{10} = 0 \\\\ \ldots \\\\ \dfrac{1}{2n}-\dfrac{1}{n} + \dfrac{1}{2n} = 0 \\ \hline \end{array} \)

 

So \(S_n\) is, we have all black terms left :

\(\begin{array}{|rcll|} \hline S_n &=& \dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{4} + \dfrac{1}{2(n+1)} - \dfrac{1}{n+1} + \dfrac{1}{2(n+2)} \\\\ &=& \dfrac{1}{4} - \dfrac{1}{2(n+1)} + \dfrac{1}{2(n+2)} \\\\ &=& \dfrac{1}{4} - \dfrac{1}{2}\left( \dfrac{1}{n+1} - \dfrac{1}{n+2} \right) \\\\ &=& \dfrac{1}{4} - \dfrac{1}{2}\left( \dfrac{1}{(n+1)(n+2)} \right) \\\\ &=& \dfrac{1}{4} - \dfrac{1}{2(n+1)(n+2)} \\\\ &=& \dfrac{1}{4} \left(1- \dfrac{2}{(n+1)(n+2)} \right) \\\\ &=& \dfrac{(n+1)(n+2)-2}{4(n+1)(n+2)} \\\\ &=& \dfrac{n(n+2)+n+2-2}{4(n+1)(n+2)} \\\\ &=& \dfrac{n(n+2)+n}{4(n+1)(n+2)} \\\\ &=& \dfrac{n(n+2+1)}{4(n+1)(n+2)} \\\\ \mathbf{ S_n }& \mathbf{=} & \mathbf{ \dfrac{n(n+3)}{4(n+1)(n+2)} } \\ \hline \end{array}\)

 

\(\large{ \mathbf{ S_n = \sum \limits_{k=1 }^{n} \dfrac 1{k(k+1)(k+2)} = \dfrac{n(n+3)}{4(n+1)(n+2)} } }\)

 

laugh

Sep 11, 2018