+0  
 
0
114
3
avatar

Calculate

 

 

Please provide a full solution!

 

Thanks!

 Sep 11, 2018
 #1
avatar+20839 
+7

Calculate

 

Calculate:

\(\begin{array}{|lcll|} \hline \mathbf{ S_n = \dfrac{1}{1 \cdot 2 \cdot 3} + \dfrac{1}{2 \cdot 3 \cdot 4} + \dfrac{1}{3 \cdot 4 \cdot 5} + \dfrac{1}{4 \cdot 5 \cdot 6} + \cdots \ + \dfrac{1}{n \cdot (n+1) \cdot (n+2)}} \\ \hline \end{array}\)

 

Formula:

\(\begin{array}{|lcll|} \hline \text{in general}:\ \dfrac{1}{n(n+d)} = \dfrac{1}{d}\left(\dfrac{1}{n}- \dfrac{1}{n+d} \right) \\ \hline \\ \begin{array}{lrcll} \text{we need}: & \dfrac{1}{(n+1)(n+2)} &=& \dfrac{1}{n+1}-\dfrac{1}{n+2} \\\\ & \dfrac{1}{n(n+1)} &=& \dfrac{1}{n}-\dfrac{1}{n+1} \\\\ & \dfrac{1}{n(n+2)} &=& \dfrac{1}{2} \left( \dfrac{1}{n}-\dfrac{1}{n+2} \right) \\ \end{array} \\ \hline \end{array}\)

 

We rearrange:

\(\begin{array}{|rcll|} \hline \dfrac{1}{n \cdot (n+1) \cdot (n+2)} \\\\ &=& \dfrac{1}{n}\times \dfrac{1}{(n+1) \cdot (n+2)} \\\\ &=& \dfrac{1}{n}\times \left( \dfrac{1}{n+1}-\dfrac{1}{n+2} \right) \\\\ &=& \dfrac{1}{n}\times \dfrac{1}{n+1} - \dfrac{1}{n}\times \dfrac{1}{n+2} \\\\ &=& \left(\dfrac{1}{n}-\dfrac{1}{n+1} \right)- \dfrac{1}{2} \times \left(\dfrac{1}{n} -\dfrac{1}{n+2} \right) \\\\ &=& \dfrac{1}{n} - \dfrac{1}{n+1} -\dfrac{1}{2n} + \dfrac{1}{2(n+2)} \\\\ \mathbf{\dfrac{1}{n \cdot (n+1) \cdot (n+2)} } & \mathbf{=} & \mathbf{ \dfrac{1}{2n} - \dfrac{1}{n+1} + \dfrac{1}{2(n+2)} } \\ \hline \end{array}\)

 

Telescoping series:

\(\begin{array}{|rcll|} \hline S_n &=& \mathbf{\dfrac{1}{2}} &\mathbf{-}& \mathbf{\dfrac{1}{2}} &\color{red}+& \color{red}\dfrac{1}{6} \\\\ &\mathbf{+}& \mathbf{\dfrac{1}{4}} &\color{red}-& \color{red}\dfrac{1}{3} &\color{blue}+& \color{blue}\dfrac{1}{8} \\\\ &\color{red}+& \color{red}\dfrac{1}{6} &\color{blue}-& \color{blue}\dfrac{1}{4} &\color{red}+& \color{red}\dfrac{1}{10} \\\\ &\color{blue}+& \color{blue}\dfrac{1}{8} &\color{red}-& \color{red}\dfrac{1}{5} &\color{green}+& \color{green}\dfrac{1}{12} \\\\ && \ldots \\\\ &+\color{red}& \color{red}\dfrac{1}{2(n-2)} &\color{green}-& \color{green}\dfrac{1}{n-1} &\color{red}+& \color{red}\dfrac{1}{2n} \\\\ &\color{green}+& \color{green}\dfrac{1}{2(n-1)} &\color{red}-& \color{red}\dfrac{1}{n} &\mathbf{+}& \mathbf{\dfrac{1}{2(n+1)}} \\\\ &\color{red}+& \color{red}\dfrac{1}{2n} &\mathbf{-}& \mathbf{\dfrac{1}{n+1}} &\mathbf{+}& \mathbf{\dfrac{1}{2(n+2)}} \\ \hline \end{array}\)

 

The part of each term cancelling with part of the next two diagonal terms:
Example:

\(\begin{array}{|lcll|} \hline \dfrac{1}{6}-\dfrac{1}{3}+\dfrac{1}{6} = 0 \\\\ \dfrac{1}{8}-\dfrac{1}{4}+\dfrac{1}{8} = 0 \\\\ \dfrac{1}{10}-\dfrac{1}{5}+\dfrac{1}{10} = 0 \\\\ \ldots \\\\ \dfrac{1}{2n}-\dfrac{1}{n} + \dfrac{1}{2n} = 0 \\ \hline \end{array} \)

 

So \(S_n\) is, we have all black terms left :

\(\begin{array}{|rcll|} \hline S_n &=& \dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{4} + \dfrac{1}{2(n+1)} - \dfrac{1}{n+1} + \dfrac{1}{2(n+2)} \\\\ &=& \dfrac{1}{4} - \dfrac{1}{2(n+1)} + \dfrac{1}{2(n+2)} \\\\ &=& \dfrac{1}{4} - \dfrac{1}{2}\left( \dfrac{1}{n+1} - \dfrac{1}{n+2} \right) \\\\ &=& \dfrac{1}{4} - \dfrac{1}{2}\left( \dfrac{1}{(n+1)(n+2)} \right) \\\\ &=& \dfrac{1}{4} - \dfrac{1}{2(n+1)(n+2)} \\\\ &=& \dfrac{1}{4} \left(1- \dfrac{2}{(n+1)(n+2)} \right) \\\\ &=& \dfrac{(n+1)(n+2)-2}{4(n+1)(n+2)} \\\\ &=& \dfrac{n(n+2)+n+2-2}{4(n+1)(n+2)} \\\\ &=& \dfrac{n(n+2)+n}{4(n+1)(n+2)} \\\\ &=& \dfrac{n(n+2+1)}{4(n+1)(n+2)} \\\\ \mathbf{ S_n }& \mathbf{=} & \mathbf{ \dfrac{n(n+3)}{4(n+1)(n+2)} } \\ \hline \end{array}\)

 

\(\large{ \mathbf{ S_n = \sum \limits_{k=1 }^{n} \dfrac 1{k(k+1)(k+2)} = \dfrac{n(n+3)}{4(n+1)(n+2)} } }\)

 

laugh

 Sep 11, 2018
 #3
avatar
+1

Thanks!!!

 Sep 12, 2018

9 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.